-1 71 7Ty 7Y Y T Ty

Y |

—

—y

T

“Prime RDAE Confidential”

PE-TI-988

TERMINAL SERVICE ARCHITECTURE

March 11, 1982

Terminal Service Architecture PE-TTI-988

DATE: March 11, 1982

TO: R & D Personnel

FROM: Dick Munroe, Evelyn Tate
SUBJECT: Terminal Service Architecture

REFERENCE: PE-TI-847, "Canonical Terminal Requirements"

KEYWORDS: Canonical terminal, Virtual terminal, Terminal Services,
PDA

ABSTRACT

This is the first draft of a Terminal Service Architecture for Prime.
This architecture is the framework for all future terminal support
projects to be undertaken by the Terminal Services Development section
of the Communications Software department.

This document contains:

o an overview of the architecture detailing its components and their
relationships;

o] preliminary specifications for services to be provided, within this
framework, to satisfy the requirements in PE-TI-847 for basic class
terminal support;

o} ideas for the application of this architecture to forms and
graphics class terminal support.

We expect that this document will eventually be folded into the Prime

Distributed Architecture documentation, as ths specification for Core
Virtual Terminal Services within PDA.

“Prime RD&E Confidential”

Terminal Service Architecture March 5, 1982
Table of Contents

=L L 5
T Terminal Service OVervVieW.....ueueeeeeoeeeeeoooeeessseassssssnannnnns 6
1.1 Goals of Terminal Services Development....ioviiiinienininnnnnnn. 9)
1.2 Relationship to PRIME's Distributed Architecture.......o..o.eo... 6
7.3 Relationship £to NON=PDA SYSEemMS. ettt e e s e eremm e, 7
2 Introduction £0 the ArchitechUre. . v e ee e eeeeeeeesenneennnneenns 8
2.7 The Logical Terminal... e ettt e e e e e eeeeeeeeeeeeiiii, 9
2.1.71 Canonical Terminal ServicesS....veieeeeeeeeeseeeneenennnenss 9
2.1 2 WindoW ServViCeS.uuueeie e eeseeeeenenneeeeeeennnnnenn 11
2.1.3 Logical Terminal ServiCeS.ueee.eeeeeeeeeeseneneeeeeensnens 13
2.1.4 Parameter Management ServicCe.......eeeeeeoeenoennnnnnnn.. 15
2.1.5 Summary of the Logical Terminal....u.eeeeeeeeeeneneennnn, 16
2.2 Human Interface ServiCe...iiee e et eeeteeieenenoeeeoneeneneneennnan 17
2.3 Terminal Service OVer SEeIr .u.eeeeee e teesonsoeeeeseenesennseneens 18
2.4 A short tour of the Terminal Service.....eeeeeeeeeeoeennennnnn. 20
2.U.1 Gebting started. ... ieneeeneeeenneneenenennnnnena 20
2.4.2 A new logical terminal....ee .o eeerenseenneneonnennnnnnnn 21
2.4.3 Data out @nd dN..eeein ittt ittt ettt 22
3 Architectural Specification...ee ittt nneeeeeeneeennnennennain 25
L O3 ¢ e o v 26
b1 Modeling Strabegy e e et eeeeeeeeeeeneeeoeneneenseneennnanaii. 26
R B N 2= = 26
L I oY o8 =0 - T 26
R P T T 26
O D - =T T 27
2.1 LeXeme SYNEaX.:ueueieeeeeeeneeroeanoesoesnsosssesennnnnnens 27
B.2.2 Standard L1eXemeS . i vt inetneeeeneeeneeneeenenennnenenennuii. 283
4.3 About ASCII and £erminals..uee.e e eeeeeeeeoeeeoenoenoenennenens 29
R TP B+ T O £ 30
§,3.2 Line feed and new L1ine...v.ieee e oteeeeeeeeonseenennnnenns 30
B.3.3 Space and Dlank...ueeueeeeeeeeeeeoeeeneeneenennonennnnnn 30
5 The Canonical Terminal Server (Level 1) .uueeeeeeeeeeeeneeneneeneeenn 32
5.1 Invoking the BCTS @b level T..u.eieeieeenneneeneeneenenennnenn. 33
5.2 About sScroll and pPaZe MOAE ... et ittt teeeeneeenenennennnnnnsen 33
5.2.1 Real world analogues of each flavor.u.. .o e e eeeeenneennn. 33
5.2.2 Why the models are conceptually different......oeeeeue... 34
5.2.3 Why we nead both models. ..., 35

Table of Contents Page 2

Termin

al Service Architecture March 5, 1982
5.3 The Basic CT Services.uuuiiivieeeeeeeeeeeeeeeeeeeeeseennnnnnnns 35
5.3.1 Appearance of a standard display. et ineneneenenennnnns 36
5.3.2 Appearance of a standard Keyboard......oiiiiiiiiniinnnnn. 36
5.3.3 A standard communications protocol. ..ttt ittt e 39
5.3.4 Character display ServVicCe.uuu.eeeeeneeeeeennnnseneeennnen. 39
5.3.5 ASCII Format Effector ServiceS.....u.euee.eeoeneoesnnnonn.. 39
5 3eb ALarm SerViCe .t et et ittt it tentes e eeennneeenneenannan 49
5.3, 7 POSIEioN SErVICeS.uutruit ittt eetene e 41
5:.3:8 Erase ServiCeS.uuueeeeeerenneneeeeeeeeeeeeeeneeeeenennnnns, u2
5.3.9 Highlight ServiceS...uuieuseeeneeeeseee e 43
5.3.10 Insert/delete ServVIiCeS.uuuue e errereeeeeeeeoeeeeennnnnns uu
5.3 11 ViSible CUIMSOr ettt n ittt tes tee e e e e e e e 45
5:3.12 MisSCellaneoUs SEIrVICeS.uuus et eeeeeeeennnnneeeeennnnnns 45
O O 8 ok 41T 45
5.4.1 Display/Keyboard interfaces (1exXemes)...v.enserssnnnennn. 45
5.4.2 Management interfaces (Parameters) cu... e i eeeeeennnennn. 47
5.5 ADOUL Lhe BCTS ServVer..uuui'eeeeneeneneenennen e b7
5.5.7 Structures used 1in BCTS. . uuiununene e s ieee e u7
S (o] =T o 51
5.5.3 Notes to the ImpPlementor...ueee e e esnenerensn .. 54
The Window Service (Level 2)..uuiiiie i eenesenm i 56
6l Services. it 58
6.1.1 Many-t£0-0Ne MaPDINE .ttt ettt s tenennenernesnenene e 58
6.1.2 Windows for logical A1splaysS . i it in it eneeeneennnnnns 58
6.1.3 Active 1ogical Keyboard...u. e eseusonensnen oo, 58
6.1.4 Operations on WindoWS...eeeeevwuneeesunnn oo 00"t 59
6.1.5 Window "Serolling™. . ueeue e e s eneennnenenmsn 59
6.1.6 Window identification.....vveuuverernnnrernnnnnonn " 59
6.1.7 Selecting a logical Keyboard. ..ooii ittt it iinneenneenn 59
6.1.8 Overlaying WindoWS...eweeeeeeeeeeeesnnmnn oo ommmt 60
6.1.9 Synchronous/asynchronous Update . it ii ittt it ii it 60
6.1.10 Scroll "pad" for PABE CD. ittt ittt eiiitntenennnennenns 50
6.2 Window INnBerfaces . uunen e ienseereensnenseen e 61
6.2.1 Display/keyboard interfacesS........eoooonnoooonoonno " 51
6.2.2 Managing WindoWs .. uu e e oo enneennenennneenene s, 61
6.3 Other WOrk on WindowsS.....u.eeueuuunnnnnnnsns oot 62
The Logical Terminal Server (Level 3)uuu.ueeeeeseeeeenne s, 63
7.1 Invoking the right Level 3 service Package .. v ieienneneeennnas 6U
7.2 The GPITS ServiCeS.ueiuneeeneeneenneennesenneeemn i, 64
72,1 Discard OUEPUL . e ettt ettt et ee e eee e e e 64
7.2.2 Suspend/ResuUme QUL PUL . v vttt it st reneeroneeennneennennns 64
7.2.3 Pagination..... e e e e e e e e e e et e et ettt e et ettt et 65
R B N 2 -1 ¢ B v e« - S 65
7+2.5 Data Forwarding..ou.ue e e eesneeeneeeeneeeemann, 56
L T X ¢ L T 66
T2 T LeXeme MapPing . ue e ee e e eesneeenneeenen e, 57
Table of Contents Page 3

Terminal Service Architecture March 5, 1982

T7.2.8 Local EdiBing..uveeeeneeineeenneeeeeeeoneoeeeneeenennennns 68

LR I 13 L X 7 5 - G 69
7:2.10 Variable TabS.iuueeeeeeeeeeeeeneneeoeeesnoeesnneeennnnnns 59
7.2.11 Variable Form Feed Handling..oue i iiniiiiin ittt inennenns 59
7:2.72 Line WrapDilg . ee e et eeeeeneeeeeseesoenoeeeneoneennnenns 59
7.2.13 Phantom Column Line Wrappifng. ... eeeeeeeeenesennneennnnnn 69

T3 GPITS INEerfaCeS . cuntneeeeereneeeneeenssoesaenansneennennnenns 70
T.3.7 Service Interfaces (LeXemMeS) v e e e eeeeeeesenennenneeeens 70

T7.3.2 Management Interfaces (ParametersS) uiu..eee e e eeeenennenss 70

ToH ADOUEL the GPITS SOI Vel vttt it tes e eneeennseennneesenseennnnn, 70
L T 1% ol P LB T | o P 71

L B o T4 o T 71

T.U.3 Notes to the Implementor.v. e e e e e eeeeeneeonenneneneenesss 75

8 The Parameter Management ServiCe...ueeeeeeeseeeeereeennnneneeennnns 76
8.1 The Parameter Management ServerS...e.ee.eeeeeeoeeseneeeoeeesnnss 76
8.1.1 Lexemes for Parameter Management......eeeeeeeenenenneenn. 77

8.1.2 Protocol for Parameter Management...o.eeeeeeeeeeeeoneesens 78

8.1.3 Notes to the Implementor. v, e e e e eeeeenneeenneennnnns 78

9 The Terminal Service OVer SO .. .iv.eeeeeeeeeeeseeeeesoeaeseenennennns 79
R S 1= o < X = 79
9.7.71 Initialization ServicesS..u.ieeeeeeeereenenneseoeeennnenns 79

012 SeCUrILY SErVICE. ittt tnnneeensneeonenneneeneeenennnens 79

9.1.3 Stream Manipulation ServicesS....v.eeeeeeeeeeeeeeeeoeseenss 80
9.1.4 Attention Delivery Service..iue.eeeeeeeeesoeeeeeneeennnns 80

9.1.5 Process Status ServicCe....veeeieeeeeeeeeeooessensancasnns 80

9.2 The Terminal Service OVerSeer .u e ee e e e e eeeeeeeeenennneeneeens 80
9.3 Notes on Implementation. . ee e eeeineeeeenneenesseneennnnsnnss 80
10 The Human Interface Service..uuiveeeeeeeeeeesnnneneeennnnneeeennnn 81
11 Proposal for further application of the architecture.............. 82

12 Glossary

Table of Contents Pagce u

Terminal Service Architecture PE-TI-988

Preface

This document is the architectural specification for the Core Virtual
Terminal Service of PRIME's Distributed Architecture (PDA). The
document is organized into three sections:

0 Architectural Specification: Sections 1 to 3. Specify the goals
of the Terminal Service, an introduction to the structure of the
Terminal Service, and a formal architectural specification of each

component of the Terminal Service [not presented in Version 1 of
the document].

o) Application of the Architecture: Sections 4 to 10. Wuile Terminal
Services Development is part of the larger PDA effort, we have to
balance architectural vision with product needs. At this time, we
have chosen to apply the Terminal Service Architecture to solving
the issues dealing with support of "character-at-a-time" terminals

and intend the first prototype terminal service to solve these
issues.

o Proposal for further applications of the architecture: Section 11.
Contains a proposal that defines how we intend to apply this
architecture toward supporting other types of terminals.

This draft of the specification is incomplete. Sections which talk
about either Window Services or the relationship of the Terminal
Service to the rest of PDA are still very preliminary; however, most

other areas discussed here will not change much in future drafts.
[Text in square brackets generally contains ideas that we hope to
expand upon in a future draft.] We have chosen to publish the
Specification in this state, rather than wait wuntil all pieces have
been filled 1in, so that readers can get a good idea of the direction

we're proceeding in, and so that current and planned projects can begin
to take the architecture into consideration.

Preface Page 5

Terminal Service Architecture PE-TI-988

1 Terminal Service Overview

A Terminal Service provides an end-to-end, device and connection
independent terminal system.

One "end" of the terminal system is a program; the other "end" 1is a
terminal providing an interface to a human user. The "service"
provided is intended to ease the development of programs that usz the
sophisticated capabilities of terminals.

1.1 Goals of Terminal Services Development

Terminal Services Development (TSD) will provide a Terminal Service
that is wholly or partially responsible for the following:

o providing programs with the appearence of a "logical terminal"
having a standard set of display and keyboard functions and a
set of display and keyboard related services, 1independent of
physical terminal-type.

0 shielding programs and terminal users from needing to know
details about the configuration of the terminal to program
connection.

o establishing and breaking connections between a terminal and one

or more processes, or between a process and one or more
terminals.

o] managing the set of services provided by the Terminal Service on
behalf of either a program or a terminal operator under
guidelines defined by a system administrator.

1.2 Relationship to PRIME's Distributed Architecture

The Terminal Service is the Core Virtual Terminal Services within
PRIME's Distributed Architecture (PDA). The Terminal Service relies
on at least these services provided by PDA.

o Job management: to assist in terminal-initiated
terminal-to-process binding, and to assist in the
task-interrupting behavior required by QUIT.

o) Naming service: to assist in terminal-to-process binding.

o Interprocess Communication (IPC): to provide communication

between components of the Terminal Service.

o Logical I/0 (LIO): to define the form of the interface between
programs and the Terminal Service.

Terminal Service Overview Pace A

Terminal Service Architecture March 5, 1982

o) System Administration: to assist in defining the initial
relationships between the terminal and the rest of PDA as well
as programs running within a PDA environment.

1.3 Relationship to non-PDA systems

The Terminal Service architecture is being defined as an integral
part of the 1larger PDA architecture. However, it is possible that
some or all of the Terminal Service must be provided in a non-PDA
system, for example today's PRIMOS. Should this occur, TSD will be

responsible for developing any and all PDA- -equivalent services for
the non-PDA systems.

Terminal Service Overview Page 7

Terminal Service Architecture March 5, 1982

2 Introduction to the Architecture

R e Ll R, +
i Program !
B et b T TR +
|
Fm e +
i Library Routines |
D i T T +
|
e +
i AMLC DIM i (or remote login,
e + or DPTX, or ...)
!
|
L TP +
| Physical Terminal |
T T +
]
I
Terminal
User

Figure 2.1: Today's Terminal Service

Terminal handling in today's PRIMOS environment is awkward. Programs
are responsible for:

o} Connection Independence. Programs are connected to terminals via a
number of different program interfaces. "Assignable" and "login"
terminals, for instance, must be treated very differently at the
program interface.

o] Device Independence. Programs must know how to handle different
terminals (for example, the PTU5, OWL, and WREN) all of which use
different escape sequences to express similar functions.

o} Logical Services. Some general terminal-handling services (for
example echoing and erase/kill processing) are handled by PRIMOS
through various interfaces. Other useful services (for example,
selective echoing and "stop printing when screen is full") must be
provided by individual programs in an ad-hoc fashion.

As a consequence, wuser interfaces to terminal services vary from
program to program; terminal services vary from program to program;
and capabilities of terminals go mostly unused.

The Terminal Service within PDA will provide a simpler and more
powerful program interface which will make it easier for programs to
get the most out of the terminal. 1In order to do this, the Terminal
Service provides programs and terminal users with the appearance of a
"logical terminal" that provides a consistent and unvarying interface
to programs and terminal users.

Introduction to the Architecture Pace Q

Terminal Service Architecture March 5, 1982

What is a "logical terminal"? How does the Terminal Service make it
appear to exist? How do programs and terminal wusers control its
behavior? The remainder of this section is an informal discussion of
the architecture which provides these services in the PDA environment.

2.1 The Logical Terminal

The logical terminal is whatever the program sees as being at the
end of its read and write character streams. All terminal
functionality visible to the program can be ascribed to this
hypothetical logical terminal. 1In practice, of course, there is no
single entity which fills this role; the Terminal Service, the
physical terminal, and various PDA services all play a part in
presenting this end-image to the program.

The logical terminal has:

o) a keyboard capable of generating a certain range of inputs;
this range defines a set of keyboard services.

o] a display which has a certain shape and size, and a certain set

of display behaviors; these behaviors define a set of display
services.

o] a set of parameters which the program can manipulate to control
the logical terminal's behavior.

The program's interfaces to read from, write to, and control the
logical terminal are consistent and unvarying.

Physical terminals don't always resemble the logical terminal very
closely. This 1is where the Terminal Service Architecture comes in.

2.1.1 Canonical Terminal Services

The first problem is that physical terminals present a wide range
of display and keyboard capabilities. The 1interfaces to those
capabilities are far from standard; everyone 1s aware that
different terminals require different escape sequences to get at
the same functions.

Therefore, the first step towards a logical terminal 1is to
provide an interface to physical terminal capabilities that does
not depend on the physical terminal.

In our model, the interface consists of a set of standarq lexemes
which represent standard keyboard and display functions. K
lexeme is the smallest self-contained unit of terminal language.

Lexemes en route from program to terminal are generglly
interpreted as display requests; 1lexemes en route from terminal
to program are generally encodings of single keystrokes. The

lexeme <A> is ‘therefore interpreted as "display an A" on output

Introduction to the Architecture Page 9

Terminal Service Architecture March 5, 1982

bkt LR - +
| Program }
i bt T T T TP +
|
]
]
]
|
B R b T Ry UL +
i Canonical Terminal Service !
e e it o TP +
]
I
1
1
|
S +
i\ Physical Terminal |
tomm e e +
|
Terminal
User

Figure 2.2: The Canonical Terminal Service

or as "the A key was pressed"” on input. Similarly, the 1lexeme
{position home> is a wunit which is interpreted as a cursor
position request or as an indication that a particular cursor key
was used. The actual 1implementation of 1lexemes may be as
messages, character sequences, or some other structure.

The Canonical Terminal Service's job 1is to translate between
these standard 1lexemes and the 1language used by the physical
terminal. When the program 1looks at the physical terminal
through the Canonical Terminal Service, it sees what we call the
Mcanonical terminal" -- a terminal with simple, standard
behaviors which generates and responds to the standard lexemes.

The Terminal Service will provide three classes of canonical
terminals:

o Basic Canonical Terminal. The familiar "character-at-a-time"
terminal. The display services of the Basic CT manipulate
(write, highlight, erase) characters on a one or two
dimensional display. Later in this document we'll be looking
at tha Basic CT in detail.

o Forms Canonical Terminal. This terminal deals with "fields"
(groups of character positions) bound together into a "form".
The display services of the Forms CT manipulate fields. The

Forms CT is nominally capable of a fair amount of 1local
processing.

o Graphics Canonical Terminal. A pixel based graphics
terminal. We don't have much to say about this topic yet,

but we know that the Terminal Service must support such a
device.

Introduction to the Architecture Damca 19N

Terminal Service Architecture March 5, 1982

But there are a lot more services to be provided by the Terminal

Service. Why are these services not provided by the Canonical
Terminal Services?

2.1.2 Window Services

The answer to the previous questions 1lies in our desire to
provide a class of services related to windows. Windows are

display regions through which a terminal uSer c¢an communicate
with one or more programs at once.

il L Uy Sy +
| Program {
i T S +
1
{
i
|
|
T —— +
i Window Service !
il T Sy S S +
[}
]
i
|
B e g gy g +
| I
| t
e g g g +
1
1
i
i
B LUy gy Ry S, +
i Physical Terminal |
i T +
l
Terminal
User

Figure 2.3: The Window Service

In today's environment, there 1is only one "logical terminal"

associated with each phy31ca1 terminal; a terminal user can talk
to only one process from his terminal.

We would like to do away with this restriction and make it
possible to support multiple processes from a single terminal.
One terminal wuser may want to work on several things
simultaneously, for example simultaneously running an editor, a

compiler, a debugger, while a status program checks for 1ncom1ng
mail messages.

Introduction to the Architecture Page 11

Terminal Service Architecture March 5, 1982

Ae believe that the best human interface in this environment is
one which allocates a separate piece of the display, or "window",
to each conversation, so that they don't interfere with each
other. The user can watch several things happening at once,
direct his 1input to the process he wants to talk to, make
interesting windows bigger, and do lots of other neat things.

Most programs are and will continue to be developed with the
assumption that the program "owns" the entire terminal; the
compiler won't be aware of the existence of the mail program, oOr
any other programs which happen to be sharing the terminal at the
moment. So, the Window Service provides programs with the
appearance of a private canonical terminal, one (or more) per
program.

This "private canonical terminal" still looks 1like a canonical
terminal to the program; the program can send lexemes to the
display, and read lexemes from the keyboard. When the program
says "erase the whole display", that indeed happens, as far as
the program is concerned. However, the Window Service intervenes
to ensure that only the appropriate window gets erased, and not
in fact the whole canonical display. The Canonical Terminal
Service continues to do its job, unaware that window manipulation
is happening above it.

With the Window Service in place, there is no need to require the
dimensions of the private canonical display to exactly match the
canonical display dimensions. We <can 1let the program "see" a
very large or a very small display. The Window Service can take
care of mapping that very large display onto the canonical
display, through a window.

From the terminal user side, the Window Service provides the
mechanism that partitions the canonical terminal into windows
through which the terminal user sees these "private canonical
terminals".

In the requirements definition for the Terminal Service, the
issue of windows was not addressed. Consequently, we're not
ready to specify the exact nature of windows in any detail. We
are using this as a placeholder until we understand, or get

Someone else to specify, the requirements for windows and
operations upon windows.

Okay, so much for windows, but back to the original question.
Wwhat happened to all the rest of the services that were supposed
to be provided by the Terminal Service? Wny aren't those
services provided by the canonical terminal?

Introduction to the Architecture Daca 19

Terminal Service Architecture March 5, 1982

2.1.3 Logical Terminal Services

o +
: Program |
R S, +
i
[}
|
i
R L N +
. Logical Terminal Service !
P e e 2 +
|
I
1
|
|
e e +
I i
| |
Fm - +
'
i
|
1
i
e e o +
I 1
| i
e e +
H
i
1
i
|
P e +
i Physical Terminal |
R il PR +
:
Terminal
User

Figure 2.4: The Logical Terminal Service

Once windows are part of the Terminal Service architecture we
nave a problem deciding where the logical terminal services
(erase/kill, line wrapping, etc.) should be provided.

As an example, look at a terminal user who is running FUTIL 1in
one window and EMACS 1in another. These program want different
behaviors, different "personalities" for their logical terminals;
for instance, FUTIL wants its logical terminal to handle all

echoing, and EMACS wants to disable that feature since it's doing
its own version of echoing.

If the Canonical Terminal Service is responsible for echoing,
does it echo a particular keystroke or not? Clearly it depends

on which logical terminal the current window belongs to; but
we've said that the Canonical Terminal Service doesn't know about
windows. Suppose the Window Service cleverly changes the

Canonical Terminal Service's echoing parameter whenever the user
moves the cursor to a different window? That's a little better,

Introduction to the Architecture Page 13

Terminal Service Architzcture March 5, 1982

but suppose the Canonical Terminal Service is called upon to echo
a "clear the entire display" request. It still can't do the
right thing without an intimate Knowledge of the window setup.

A much simpler solution is to put the "personality" portion of

the logical terminal above the Window Service. The Logical
Terminal Service is responsible for providing those
behavior-modifying services. Like the Canonical Terminal
Service, the Logical Terminal Service is unaware of the existencs
of windows. t does its job thinking that it owns a private
canonical terminal; the Window Service makes sure that the

window boundaries are observed.

Each logical terminal has its own set of logical terminal
services, provided by its own copy of a Logical Terminal Server.
Examples of logical terminal services are:

o} Echoing -- associating a visual display operation with each
keystroke.

o] Erase/Xill -- allowing the terminal user to modify his typed
input before the program gets it.

o Translation -- allowing the program to converse in EBCDIC,
even though the canonical terminal is defined to understand
ASCII.

In short, a logical terminal service is anything that alters the
program's perception of the behavior of the canonical terminal.
A program which was happy with the definition of the canonical
terminal, and which wanted to send and receive canonical terminal
lexemes with nothing added, wouldn't need a Logical Terminal
Service at all.

There will probably be completely different "packages" of logical
terminal services, aimed at providing different logical terminal
personalities. Later in this document we'll be looking closely
at one such package, which 1is 1intended to support (with

considerable extensions) PRIMOS's '"standard" 1login terminal
personality.

Since each program has its own logical terminal, and we've said
that different logical terminals, wusing the same physical
terminal, can have different behaviors (echo and no echo, for

instance), we have to provide a way for programs to control the
logical terminal's behavior.

Introduction to the Architecture Page 14

Terminal Service Architecture March 5, 1982

2.1.4 Parameter Management Service

The Parameter Management Service allows a programs to find out or
change the state of its 1logical terminal. The program hands
"read parameter" and "write parameter" requests to the Parametar
Management Service, which performs the appropriate service.

+
i Program !
o e e e e e e e e e +
1 !
| I
! I
| |
] |
| |
i S . +
| i Service to manage |
i | parameters |
| . that control ... |
o +mmm e m e |
| i-1 Logical Terminal i
o e e + | Services |
| R et T |
1 1
1 |
i 1
| |
P + T T i
i |~ ———— i Window Services !
P e + R e T T Tpu !
1 1
1 [}
1 1
| |
| 1
| |
P e L R T LT Ty i
' i-1 Canonical Terminal |
o - + | Services i
' g +
|
|
|
o e +
! |
| |
e e +
|
Terminal
User

Figure 2.5: The Program managing the Logical Terminal

The program doesn't know about the components inside the Terminal
Service; 1it's interested only in the net effect -- the logical
terminal. Within the Terminal Service, however, a particular
parameter may be relevant to any one, or more than one, of the
three servers. The size of the logical display, for instance, is
known to both the Logical Terminal Service and the Window
Service; anything having to do with the physical display (for
instance, whether it's capable of reverse video) is known only to
the Canonical Terminal Service.

Introduction to tne Architecture Page 15

Terminal Service Architecture March 5, 1982

The Parameter Management Service is responsible for providing a
single program interface for managing the logical terminal. The
program never sees the complexity within the Terminal Service.

2.1.5 Summary of the Logical Terminal

Programs and terminal wusers see the Terminal Service from
different perspectives.

From outside the Terminal Service a program sees a "logical
terminal". As far as a program 1is concerned, the "logical
terminal" has a certain size, shape, and a characteristic set of
behaviors that programs find useful.

On the other hand, the terminal user sees "logical terminals"
through windows displayed on nis physical terminal. "Windows"
(or viewports) allow the terminal user to partition the disnlay
portion of the canonical terminal in a way that allows the
terminal user to talk to many programs at the same time.
"Windows" aside, the "logical terminal" seen by the terminal user
is the same object that the program sees, with the same nice
features: a certain size, shape, and characteristic behaviors.

These four components of the Terminal Service contribute to the
appearance of a "logical terminal".

0 Logical Terminal Service: provides the characteristic set of
behaviors that programs and terminal users expect. This 1is
the "personality" portion of the logical terminal. We talk
about one set of behaviors in detail later.

o] Window Service: provides the size and shape of the 1logical
terminal, and manages the windows through which the terminal
user views one or more logical terminals.

o] Canonical Terminal Service: provides a standard "vocabulary"
(lexemes) for manipulating terminals. This is the ‘"physical
interface” portion of the logical terminal. The rest of the
Terminal Service, and as a consequence all programs outside
the Terminal Service, need never know the details of managing
particular types of terminals.

o Parameter Management Service: provides the management
interface that allows programs to control parameters to
modify the behavior of the logical terminal.

So far we've explained how the program controls the 1logical
terminal. But what about the terminal user? We know he'll want
to modify the 1logical terminal's behavior too, to change
erase/kill characters, perhaps to control window sizes, and so
forth. He can talk to programs through the Terminal Service, but
how does he talk to the Terminal Sarvice?

Introduction to the Architecture Page 15

Terminal Service Architecture March 5, 1982

2.2 Human Interface Service

The Human Interface Service is a special program which the terminal

user uses to manipulate the parameters of any of his logical
terminals.

tmmm————— + ey +
i Program | . Human Interface Service |
e + e e T Ty Uy +
t] |
I | |
| | 1
| | |
1 [}]
1 i |
! ! o e +
t 1] |
] | § f
1]] |
| | | I
1 1] |
i | | |
Fmmmmmmee S T !
| 1] [}
1 1 =1 |
P . + | |
| 1 1
I | e e |
| 1
| i
1 |
| |
P e + | = m e |
[} [} 1]
] | m———— I
e + T T T |
1 1
] 1
1 1
i |
| !
| 1
F e e i et U i
I]] 1
| 1= |
o + i
: L LT . +
i
i
Rl +
! I
| i
L i T +
[}
t
Terminal
User

Figure 2.6: The Terminal User managing the Logical Terminal

The Window Service provides a way for a terminal wuser to converse
with many programs through a single canonical terminal. Taking
advantage of this facility, we have modeled the Human Interfaca
piece of the terminal service as "just another program" using phe
services provided by the Terminal Service to carry on a conversation
with the terminal user.

Introduction to the Architecture Page 17

Terminal Service Architecture March 5, 1982

The Human Interface Service talks to the terminal user through a
logical terminal, Jjust as any other program would. This logical
terminal will be windowed onto the canonical terminal, just like any
other logical terminal. The Human Interface Service uses the
capabilities of the 1logical terminal (for example, echoing,
erase/kKill, clear display) to provide an appropriate user interface.
The conversation between the terminal user and the Human Interface
Service consists of whatever is considered "normal” or "comfortable"
for the wuser: menus, forms, TERM commands, or any other user
interface that 1is considered appropriate. The Human Interface
Service invokes the Parameter Management Service to change
parameters for any of the user's logical terminals, 1including the
one in use by the Human Interface Service.

But there's still a piece missing. The Parameter Management Service
controls a logical terminal on the behalf of the program which uses
it. We've Jjust said that the Human Interface Service can control
some other program's logical terminal. But we previously said that
programs sharing the same canonical terminal don't know about each
other and can't see each other's logical terminals. How does the
Human Interface Service do it?

2.3 Terminal Service Overseer

To answer that question, we 1introduce the last component of the

Terminal Service. The Terminal Service Overseer provides all
services that involve the relationships between streams owned by a
single terminal user. There are streams within the Terminal

Service, (maybe) streams to Job Manager(s), and the normal streams
(e.g. standard in and standard ou) to processes which are clients
of the Terminal Service. The Terminal Service Overseer is a "master
manager" that manages the connections among components of the

Terminal Service and provides the terminal user's "window" into the
rest of PDA.

This is the least understood piece of the Terminal Service, because
it has an intricate relationship to the PDA environment, which isn't
completely defined yst. We can mention some of the services we know
the Terminal Service Overseer will provide.

o] Terminal Service 1Initialization: Finding all the correct

servers and hooking them together so that the Terminal Service
can operate.

e} Terminal Session 1Initialization: Getting a terminal user
connected to the right Job Management Service so that he can
access the complete PDA environment.

0 Terminal Process Stream Management: Getting everything required
for a new "logical terminal" set up when a process opens a new

stream to the Terminal Service (including the right Logical
Terminal Service).

Introduction to the Architecture Page 18

Terminal Service Architecture March 5, 1982

The Terminal Service . Prime's Distributed

Environment

T I T p— +
N i . +- Name Space Services
=t mmmm—mmm o + .
i | | | i System Administration
| i i i . | Services
1 1 ' 1 !
| | | | l
' |+t e + . | Job Management Services
i i 1 | | Terminal b
i i 1 1= Service |----+ Logical I/0 Services
i i 1 1 ! Overseer R
tomm———— + =] dmmmemmmmme—o + . Inter-Process
i P=1 . Communication
Fmmmmm - + 1 . Services
: :—: .
i i . Security Services
1 !
| |
Fomm———— + -1 ete.
1] 1 1
} 1= 1 .
Fmm————— + 0= .
I }
i I
t }
! | .
[} [}
| 1
Fmmm———— + = .
t 1] 1
! | B | i .
Fmmmmmmm + 0 .
i +-+ .
: .
|
Fomm—— +)
[}]
| | .
fmmmm———— +

Figure 2.7: Managing the Terminal Service

o} Stream Interrelationships: Providing special clients 1like the
Human Interface Service with the ability to control other
logical terminals.

o] Security: Keeping unauthorized programs from accessing other
logical terminals.

0 And probably others we haven't thought of yet.

Introduction to the Architecture Page 19

Terminal Service Architecture March 5, 1982

2.4 A short tour of the Terminal Service

"Nothing is what it appears to be! All is illusion and
chaos is loose on the world..."

from Waldo % Magic, Inc. by R. Heinlein.

If you have made it this far, there is lots more stuff that fnsllows.
Here are a few brief scenarios describing how we think all this will
work within PDA, Unfortunately, even a brief scenario is a couple
of pages 1long. If you don't intend to read any further, thesa
scenarios will leave you with a good idea of the "flavor" of the
Terminal Service. If you do intend to read further, these examples
should make the rest of the document easier to understand.

2.4.1 Getting started

We assume that, at the very beginning, the PDA System
Initialization Service has started up a Terminal Service
Overseer, and that that, in turn, has started up the appropriate
Canonical Terminal Server (basic, forms, etc.) for each
terminal, as specified in some system profile. This 1is the
minimal state for an 1inactive terminal. (Notice that all
terminal I/0 is made canonical from the very beginning -- the
Canonical Terminal Service 1is always there to kaep
terminal-type-specific data out of the system.)

This scenario shows what happens to get the whole Terminal
Service assembled when a terminal becomes active.

o] The terminal user sits down at terminal XYZ and presses a key
on the physical keyboard.

o] The Canonical Terminal Service receives the terminal's input
for that keystroke, converts the input to canonical form (2
lexeme), and emits the lexeme upward

o Where the Terminal Service Overseer gets the lexeme. The
Overseer realizes that terminal XYZ is trying to enter the

system. The Overseer first connects the Canonical Terminal
Service to a Window Service.

o} Next, the Overseer starts up the appropriate (according to
some profile) Yuman Interface Service and tells it to connect
itself to terminal XYZ. The Human Interface Service selects
a s2t of logical terminal services and invokes Logical I/0 to
connect a named stream to XYZ. The Overseer fields the
CONNECT request at the terminal end, creates a logical
terminal, and plugs in the specified Logical Terminal Server.

Introduction to the Architecture Page 20

Terminal Service Architecture March 5, 1982

o] The Overseer goes through the same steps to get a PDA Job
Management Server hooked up to the same terminal, with its
own (possibly different) Logical Terminal Server.

o) The terminal user has entered the system.

All this has happened in response to that first keystroke. The
terminal user has at his command a Job Manager, waiting for him
to log in, and a Human Interface Server, waiting for him to set
or examine terminal service parameters (including the erase/kill
characters to be used during the log in dialog).

2.4.2 A new logical terminal

Let's look in a little more detail at a step we glossad over in
the previous scenario -- creating a new logical terminal. This
will be a frequent operation for the Terminal Service; it might
happen whenever the Job Manager starts up a new process, to run
from the same terminal; when the system mail service, having a
message for a wuser, opens a stream to the terminal that user's

logged in at; or when EMACS requests a new window to display
another file buffer.

o] A process connects a named stream (or a pair of
unidirectional named streams?) to the object XYZ.

o) The PDA Logical 1I/0 service interprets that request and
invokes the PDA Session Establishment Service, which finds
XYZ in the global name space and informs the Terminal Service
Overseer for XYZ about a new incoming stream.

o] The Overseer allocates a new logical terminal data base for
XYZ, plugs the default Logical Terminal Service into the new
stream between itself and the process, starts up a Parameter
Management Service to go with it, and passes its end of the
stream to the Window Service. The Overseer also s=2ts up a
default window allocation for this logical terminal. (We
have no idea how the default window should look.)

o] The Window Service repaints the Canonical Display to make
room for the new window, which is initially empty.

o] The new logical terminal is ready for use.
The process may want to manipulate its logical termingl
parameters (change the echo behavior, or some such) before it

starts sending data to the display.

Introduction to the Architecture Page 21

Terminal Service Architecture March 5, 19832

2.4.3 Data sut and in

The final example will follow some lexemes through the Terminal
Service. This won't by any means be a complete description of
the work done at each level; it's just intended to give the
flavor of what might happen where, and why. For this example,
we'll assume the Basic Canonical Terminal and the "general
purpose" Logical Terminal Service have been selected.

First, look at what happens to the grapnic character "A" between
program and terminal.

0 Within LIO: The LIO mechanism takes a semantic request for
"A" from the program, and maps that into the lexeme <A> to be
passed to the terminal service. The format of the program's
semantic request hasn't been determined at this writing;
most likely it will be just the ASCII character "A" in a
buffer referred to by a LIO WRITE statement.

o] The lexeme first encounters the Logical Terminal Server (LTS)
at "level 3" of the Terminal Service. The server applies
some set of tests and transformations to output lexemes. In
this example, it might test to see whether "discard output"
has been requested (in which case the <A> would be thrown
away), or whether any lexeme transformation is required (such
as happens for control character expansion). If the <KA>
passes all tests, it will be passed onward.

0 At level 2 (the Window Server (WS)): This server checks to
see whether this process's output is currently windowed onto
the canonical display (via the Basiz Canonical Terminal
Server) and whether this display request can be satisfied
within this window. If the active position is in a different
window, the <A> may need to be preceded by a <position>
lexeme to get it to appear in the right region of the
canonical display.

o) At level 1, the Basic Canonical Terminal Server (CTS): This
server, on receipt of the <A>, does whatever is necessary to
(a) get the character A to appear at the current active
position of the display, and (b) advance the active position
in accordance with standard rules (including what 1is to
happen at the boundaries). For most terminals, sending an
ASCII "A" out on an asynchronous 1line will do the trick;
however, there may be extra translation (ASCII to EBCDIC, or
lower to upper case) or special protocol handling (for an
SDLC terminal) at this 1level, to handle idiosyncrasies of
particular terminals.

Now, watch the same "A" as it progresses from terminal to
program.

Introduction to the Architecture Page 22

Terminal Service Architecture March 5, 1982

For
up"

At level 1 (CTS): The terminal-dependent keystroke for "A"
i1s mapped into the the lexeme <AD>. Usually there's nothing

to this, but remember there could be translation or special
protocols involved here.

At level 2 (WS): This server determines which of (possibly)
several process input streams should get this lexeme.

At level 3 (LTS): This server, on receipt of the <A> lexeme,

applies some set of input tests and transformations. One
sample service 1includes echoing (should this 1lexeme be
echoed? if so, as what?). An echo will cause the

appropriate lexeme(s) to be shipped to the display (via the
level 2 server, as usual). If the program has invoked the
"character-at-a-time" data forwarding service, the <A> will
be sent off to the program; if not, the Logical Terminal

server may hold onto it until some other condition (such as
end of line) is met.

Within LIO: The LIO mechanism will convert the <A> lexeme
into some semantic representation understood by the progranm.
(Probably just an ASCII "A™ character in a READ buffer.)

a slightly more interesting case, let's follow a "move cursor
request from program to terminal.

Within LIO: The Logical I/0 mechanism takes the semantic
request (that the cursor be moved up one position) from the
program, and maps that into the lexeme {position up> to be
passed to the terminal service. We don't know yet the format
of the terminal's request; it could be a sequence of ASCII
characters, or a special character in a Prime-defined
character set, or an LIO POSITION function which looks
similar to a WRITE function, or a device-specific "terminal
position" call.

At level 3 (LTS): This server performs the same set of
checks on the <position up> lexeme as it did for the <A>.

At level 2 (WS): This server performs the same set of checks
as it did for the <A>. If the <position up> would move the
cursor outside of the allowed window, the server would

probably replace the <position up> lexeme with some different
flavor of <position>.

At level 1 (CTS): When this server gets a {position up>
lexeme, it does whatever is necessary to causz the cursor to
move up one position on the physical display (subject to the
standard boundary violation rules). For some terminals, the
server can just invoke the terminal's "position up" operation
-- (e.g. for a PT45 the server would send the right
two-character escape sequence). For some terminals, the
server may have to invoke an explicit "position to <x,y>"
operation, providing a row and column number.

Introduction to the Architecture Page 23

Terminal Service Architecture March 5, 1982

Now, watch the same "move cursor up" as it progresses from
terminal to program.

o} At level 1 (CTS): When the terminal user hits the "position
up" key (usually 1labeled with an arrow) on, say, his PTU45,
the terminal generates an escape sequence which is identified
by the Basic Canonical Terminal server. The server collects

the characters and maps them 1into the single lexeme
{position up>.

o At level 2 (WS): Routes the 1lexeme to the right process
input stream.

0 At level 3 (LTS): This server applies the same tests and
transformations to the <position up> lexeme as it did for the
<A>. This includes echoing (should a <position up> be
echoed?), data forwarding (should a <position up> cause
forwarding?) and so forth. This server could even be told
to discard positioning lexemes completely, if the program
preferred not to handle them.

0 Within LIO: The LIO mechanism will convert the <position up>
lexeme into some semantic representation understood by the
program. We don't know what the format would be yet, but it
might be a character sequence, a special character, an
on-unit invocation, or whatever.

Seems awfully easy, doesn't it. Come back in December, 1982 for a
demo of the prototype.

Introduction to the Architecture Page 24

Terminal Service Architecture March 5, 1982

3 Architectural Specification

[This section will be the formal definition of the architectural
responsibilities of each component of the Teminal Service Architecture.
We won't fill this section in for Draft 1. Most, if not all, of the
material comprising the content of this section is present in the
sections below. Extracting that material, editing the resulting
changes, incorporating the draft 1 review comments, and expanding the

apglication sections appropriately will be the primary content of draft
)

Architectural Specification Page 25

Terminal Service Architecture March 5, 1982

4 Concepts

Tnis section defines and discuss concepts and terms used throughout the
document. [It isn't complete yet.]

4.1 Modeling strategy

This document is not an internal design document for the Terminal
Service. This document does defines the framework that partitions

the design and implementation. Specific physical implementation
requirements will influence how the framework is actually

implemented.

4.,1.1 Servers

For the purpose of this model, we have partitioned the Terminal
Service into a number of individual servers. This strategy
serves two purposes. First, it allows us to partition the
overall Terminal Service 1into smaller and simpler sets of
services (a terminal-independence service, a
parameter-controlling service, and so forth), which can be
individually discussed and understood more easily than the whole.
Second, it provides us with a reasonable set of guidelines for
distributing the overall Terminal Service in a PDA environment.

The separately-defined servers are good candidates for
distribution.

4,1.2 Workers

Workers are asynchronous algorithms within a server. Each worXer
is big enough to be interesting and small enough to be described
clearly. Workers are simply a convenience for partitioning and
describing the problems that must be addressed within a server.
Workers are not intended to be a detailed design specification of
how to solve the problems. We think of workers as mini-servers
that cooperate within the context of a bigger server. Other ways

do exist to approach the modelling problems for which we use the
Wworkers.

4,1.3 Levels

We use the term "level™ occasionally throughout this document to
refer to the components of the Terminal Service which act on and

transfer data -- "terminal traffie" -- between program and the
physical terminal. These 1levels are numbered in order of their
proximity to the physical terminal; the Canonical Terminal

Service resides at 1level 1, the Window Service at level 2, and
the Logical Termial Service at level 3.

Concepts , Page 25

Terminal Service Architecture March 5, 1982

4.2 Lexemes

Lexemes are the smallest self-contained units of terminal 1language.
Programs will communicate with the Terminal Service through a
protocol which consists of an exchange of lexemes. The existence of
lexemes may, however, be hidden from the application programmer by
appropriate higher 1level interfaces. Servers within the Terminal
Service also use lexemes to communicate among themselves.

Lexemes are language units, not "commands". All components of the
Terminal Service must be prepared to receive and parse all lexemes,

but their meaning and interpretation may vary throughout the
Terminal Service.

4.2.1 Lexeme syntax

General syntax for lexemes is

{lexeme-name [{parameter [, ...1}1>.
Examples of well-formed lexemes are:

{oregano>
<fruit {bananal>
<make salad {lettuce, carrot, tomato}>

This syntax is wused to differentiate 1lexemes from the
"characters" that they represent, i.e. +the character "A" and the
lexeme <A> are different objects.

We have not chosen a format for internal representation of
lexemes, but it must have these characteristics.

o] Regular. Any server should be able to recognize and parse
all lexemes, even unknown ones.

o] Capable of inclusion of arguments whose data type is
dependent on the 1lexeme name. Column numbers and visual

attributes are examples of arguments we want to support
within lexemes.

o) Extensible. We would 1like to support an arbitrarily 1large
lexeme vocabulary.

We know of several existing implementations of lexeme-like
objects in other systems; these include:

o) European Virtual Terminal Protocol "messages": lexeme =
length + code + code-specific arguments.

Concepts Page 27

Terminal Service Architecture March 5, 1982

o] ANSI/ISO terminal control sequences: lexeme = introducer +
code + code-specific arguments + terminator.

4.2.2 Standard lexemes

We expect 2a wide variety of lexemes to be defined for different
versions of the Terminal Service. For instance, the vocabulary
for a forms class terminal will include lexemes for field
definition concepts which are not relevant to basic class
terminals. However, there is a set of standard lexemes which is
of general usefulness and which should be always supported.
These include 1lexemes for all ASCII characters, and a few
miscellaneous ones.

4.2.2.1 Graphic Lexemes

There is a lexeme for each ASCII graphic character, 95 in all.
They include letters (e.g. <A>, <a>), numbers (e.g. <1>),
punctuation and other special characters (e.g. <!>, <™>), and
blank (<blank>).

The notation <graphic> will be used to represent any graphic
lexeme.

4.2.2.2 Format Effector Lexemes

There is a 1lexeme corresponding to each of the six ASCII
format effectors. We have added two, <new line> and <space>,
which are implicitly defined 1in ASCITI as alternate
interpretations of other characters. (See the section "About
ASCII and Terminals" for more explanation.) The eight format
effector lexemes are:

<{BS> or <back space>
<HT> or <horizontal tab>
<LF> or <line feed>

"KVT> or <vertical tab>
<FF> or <form feed>
<CR> or <carriage return>
<NL> or <new line>
{SP> or <space>

O 00O 00000

The notation <format effector> will be used to represent any
format effector lexeme.

Concepts

Terminal Service Architecture March 5, 1982

4.2.2.3 The Bell Lexeme

The <bell> 1lexeme corresponds to the ASCII control character
"BEL" .

4.2.2.4 Control Lexemes

These are lexemes which correspond to all the rest of the
characters in ASCII which have no specific application to
terminal functions. They are generally used for
communications control, device control, and information
Separation. There are 26 control characters; they are the
first 32 characters of ASCII, octal :0 through :37 (minus the
format effectors and BEL, which are terminal related
functions) and the DEL character (octal :177). We will refer
to them using either their ASCII names (e.g. <NUL>, <ETX>,
<DC1>) or the more familiar control-letter terminology (e.g.
<control-8>, <control-C>, <control-Q>.

The notation <control®> will be used to represent any control
lexeme.

4.2.2.5 Special Purpose Lexemes

o {repeat {number}>

This lexeme will cause the previously-received 1lexeme to be
repeated {number} more times.

o) {transparent {byte-string}>

The byte-string is passed through without any modification by
the interpreter of this lexeme. Bytes are 8-bit quantities.

o} <nil>

A lexeme with no effects. The <nil> lexeme can be discarded
at any time with no unexpected side effects.

4.3 About ASCII and terminals

This section provides a 1little background relevant to our use of
ASCII, the "American National Standard Code for Information
Interchange™, ANSI standard X3.4-1977.

Concepts Page 29

Terminal Service Architecture March 5, 1982

4.3.1 Why ASCII

Since ASCII 1is the commonly accepted character standard, we have
adopted it (with modifications described below) as the standard
lexeme vocabulary for terminals. We are not ruling out support
for other character sets; in fact we fully expect +to support
many character sets in addition to ASCITI. However, we cannot yet
justify replacing ASCII as the "standard" character set with any
of the "extended ASCIIs" currently proposed or in wuse outside
Prime. This may change if, for example, Prime makes a commitment
to Office Automation large enough to justify adopting the
proposed ISO document-processing character standard ("Teletex")
as our official internal character set, replacing ASCII.

4.3.2 Line feed and new line

The ASCII standard contains the following statement about the
"line feed" format effector.

"Where appropriate, this character may have the meaning

'New Line' (NL), a format effector that advances the
active position to the first character position on the
next line. Use of the NL convention requires agreement

between sender and recipient of data."

Prime has adopted the NL convention for internal use. We do this
by always interpreting the LF character with NL semantics. This
makes the plain LF function unavailable.

We want to make both functions available to programs and terminal
users. Rather than creating one lexeme which has two different
interpretations depending on context, we have created two
Separate and unambiguous lexemes, <LF> and <NL>. Most Terminal
Service users will use <NL>, but <LF> will be available as well.

The ASCII standard also allows the other vertical format
effectors, vertical tab and form feed, to be interpreted as
moving the active position to the first column of the new line.
Since neither character is used much at Prime now, we've made the
arbitrary decision which seems most useful, which is to always

include the "first column" semantics when the <KVT> and <FF>
lexemes are interpreted.

4.3.3 Space and blank

The ASCII standard contains the following statement about the
"space" graphic character.

"SP (Space). A graphic character that is usually
represented by a blank site in a series of graphics. The
Space character, though not a control character, has a
function equivalent to that of a format effector that

Concepts Page 30

Terminal Service Architecture March 5, 1982

causes the active position to move one position forward
without producing the printing or display of any

graphic.m
These two meanings -- produce a blank character position, and
move the active position forward one position -- are equivalent

in the usual case of printing text on a previously-blank display.
But when the positions affected are not already empty, the
meanings are different: the first "replaces any existing
character with a blank, while the second is a2 non-destructive
positioning operation. An example of this confusion can be seen
in the way RUNOFF underlines text on a terminal; it uses spaces
to move the cursor to the text to be underlined, but a CRT

interprets the request as blanks, erasing all preceding text in
the process.

To avoid this ambiguity, we have created two Separate lexemes:
<{blank> is a graphic character, and <{space> is a format effector
(the reverse of <back space>). Most Terminal Service users will
use <blank>, but <space> will be available as well.

Concepts Page 31

Terminal Service Architecture March 5, 1982

5 The Canonical Terminal Server (Level 1)

Level 1 is the "bottom" level ofjghe Terminal Service. This 1level 1is
the closest to the physical terminal. The server at this level 1is
called a Canonical Terminal Server, or CTS; it handles the mapping of

standard display and keyboadd operators onto physical terminal's
displays and Xeyboards. ‘

A client of the CTS 1invokes standard display services by sending
standard lexemes to the CTS. The display effects of the standard
lexemes are defined in terms of their effects on an abstract display,
called the canonical display (CD). The CTS provides standard keyboard
services by zenerating standard lexemes which represent keyboard input.
The standard lexemes will appear to have been produced by an abstract
keyboard, called the canonical keyboard (CK). The combination of
canonical display and canonical keyboard is called a canonical terminal
(CT). The Canonical Terminal Server handles any operations necessary
Lo provide 1its clients with the appearance of a canonical terminal.
The Canonical Terminal Server also emulates the the canonical terminal

on physical terminals (devices consisting of a paired display and
keyboard).

The CD and the CK will be defined to behave in ways that are
representative of most, but not all, existing displays and keyboards.
Some work must usually be done, by any implementation of a Canonical
Terminal Server, to emulate the CD and CK using existing equipment.
The amount of space allocated for data structures, and work done to
translate lexemes into physical terminal 1language, will be directly

affected by how closely the physical display and keyboard match the CD
and CK. If

o) the display understood lexemes and provided all of the display
effects defined for the CD, and

o] the keyboard generated the standard lexemes in response to
keystrokes, and

o the terminal had management interfaces to set and read the
parameters defined in this section

then the physical terminal would be an implementation of a Canonical
Terminal Server, and we Wwould not have to write separate software to
support the CT. If PRIME were to build a "FINCH" terminal that met the
above requirements, we could achieve a substantial savings in work and
space, With a corresponding increase in overall system performance.

Becauszs of the wide variation in capabilities of physical terminals, we
have defined three classes of canonical terminal.

0 Basic canonical terminal. This class is modeled upon the familiar

character-oriented terminal which has either a scrolling or a page
display.

The Canonical Terminal Server (Level 1) Page 32

Terminal Service Architecture March 5, 1982

0 Forms canonical terminal. This class of terminal has a display

which is organized into fields (groups of contiguous character
positions) which together constitute a form.

o] Graphics canonical terminal. This class of terminal has a pixel
display.

The architecture allows the existence of 2 separate CTS for each class
of canonical terminal. The canonical display and canonical keyboard
for each class will be definad to reflect the capabilities of actual
terminals of that class. Standard lexemes will be defined to represent
display and keyboard functions of each class.

This section of the Terminal Service Architecture document describes in
detail the Basic CT and the Basic Canonical Terminal Server (BCTS).
The other terminal classes will be discussed briefly in the later
section "Proposals for further applications of this architecture".

5.1 Invoking the BCTS at level 1

[How this happens ... when you would use the basic CT package
rather than some other (e.g. forms) CT package. This function is
intimately associated with the Overseer Initialization Service. The
"appropriate" set of CT services is probably set up once, for all
time, by the Overseer Service. We talk about how the appearance of

various CT services might be achieved in the section "Proposal for
further applications of the architecturea".]

5.2 About scroll and page mode

BCTS provides two distinctly different flavors of service, called
scroll mode and page mode. These have different display Dbehaviors
because the underlying model of a display is different in each mode.
To explain why we did this, here's some of the background.

5.2.1 Real world analogues of each flavor

A scroll class display functions like a teletype. The characters
are displayed at the cursor (or active) position. The cursor

advances one character position after each character. When a
scroll class display sees a '"new line" character or a
"carriage return/line feed" character sequence, the display
(usually paper) "scrolls" up by one 1line so that the cursor
appears at the beginning of a fresh and empty 1line. Previous

lines can no longer be written on (the paper doesn't scroll down)
although the operator may still be able to see them. A "glass
teletype”, which is a CRT on which new lines are entered at the
bottom and old 1lines scroll off the top of the screen, also has
scroll class functionality.

Tne Canonical Terminal Server (Level 1) Page 33

Terminal Service Architecture March 5, 1982

A page class display functions like a sheet of paper with <m>
lines each of <n> characters. The cursor (or active) position
can be moved to any of the <m>*<n> positions on the page. When
characters are displayed on a page class display, the cursor
behaves in much the same way as for a scroll class display.
However, the "new line" character or "carriage return/line feed"
character sequences do not guarantee an empty 1line in a page
class display. Once characters are displayed on a pagas they must
be explicitly "erased".

5.2.2 Whny the models are conceptually different

At first, a scroll class display appears to be a degenerate case
of a page class display, where the number of lines <m> happens to
be one. It might therefore appear that there is really only one
kind of display. This is almost but not quite the case.

The key to the difference between scroll and page class displays
is in the scrolling action of the scroll class display. A
"new line" character, or its equivalent, a
"carriage return/line feed" character sequence, causes the scroll
mode terminal to physically "seroll" -- the platen advances and
the "print head" is positioned to the beginning of a new line
(e.g. of paper on a hardcopy terminal). The new 1line is
guaranteed to be empty, "fresh", regardless of the program's past
benavior. Only the new line of paper is accessible for display
functions -- the platen cannot roll backwards and the print head
cannot move backwards. Therefore any characters printed before
the "new line" character are unchangeable. (This is the critical
point -- if the platen and print head can move backwards, it's a
page display.) The length of the "paper"™ is considered to be
unbounded and each '"new line" character character has the same
effect as any of the previous ones.

On a page display, which 1is explicitly two dimensional and
bounded, a '"new line" character is a positioning operator which
moves the active position or cursor to the beginning of the next
of the <m> available lines. There is no concept of "scrolling";
nothing changes except the active position. The active position
can be moved "up", so previously-written positions on previous
lines can be revisited. The line the cursor is on following a
"new line" character contains whatever the program previously put
there (which may be empty if that line had been previously erasad
by an "erase 1line" or "erase display"). Since the page display
has a finite number <m> of lines, "new line" character requests
will work until there are no "new" lines. A "new line" character
request that cannot work, e.g., the cursor at the bottom of the
page, is treated in the same way as a boundary-violating
positioning request.

The Canonical Terminal Server (Level 1) Page 34

Terminal Service Architecture March 5, 1982

Obviously, the canonical displays exhibit two different display
behaviors. Some physical displays will be able to emulate both
the scroll and page CD, some will be able to emulate only the
scroll or page CD. The decision to emulate either the scroll or

page CD (or both!) on a particular physical display 1is an
implementation issue.

Since the scroll and page canonical displays are different in
intent, switching from one type of canonical display to another

results in the creation of new canonical displays, previous
information about the CD is lost.

5.2.3 Why we need both models

The scroll class display is the least common denominator of
display functionality. Scroll class features are commonly wused
by our software and are currently supported by PRIMOS for all
displays. (Almost all real displays can operate as scroll class
displays and we emulate scroll class for those which don't, for
example IBM 3270 terminals.)

Terminals with displays having only scroll class capabilities,
e.g., the ASR / KSR model 33, are no longer the norm. Almost all
terminals have displays with two-dimensional cursor positioning,
the prerequisite for a page class display. However, as the least
common denominator, a scroll class display is assumed by most of
today's PRIMOS programs -- including compilers, command
processors, some editors, and most tools.

A.page class display can present a better human interface than a
scroll class display (for example in screen editors). However, a
standard program interface to page <class displays 1is not
currently availablas. As a consequence not many of today's PRIMOS
programs take advantage of page class displays.

Therefore, both classes of display must be available: a scroll
class display for compatibility with the past, and a page class
display for exploitation of the present.

5.3 The Basic CT Services

The primary source for the definition of Basic Canonical Terminal
services has been the set of requirements presented in the Canonical
Terminal Requirements document. We have added a few things (e.g.
the separate cursor and active position) which wa feel are useful at
this level.

This section provides only an overview of the services which the
Basic Canonical Terminal Server will provide. Detailed
specifications of all services, including the 1interactions among
them and the management interfaces used to invoke and control them,
will be developed for a separate document, the Terminal Service

The Canonical Terminal Server (Level 1) Page 35

R

Terminal Service Architecture March 5, 1982

Functional Specification.

BCTS clients (either programs or other components of the Terminal
Service) will access these services through 1lexemes. BCTS will
perform a display service (e.g. display graphic, =2rase display)
when it receives the appropriate lexeme from a client; and it
performs a kesyboard service (e.g., application function key) by
generating a 1lexeme to be provided to the client [awkward]. The
lexemes associated with services are listed along with the service
descriptions.

5.3.1 Appearance of a standard display

BCTS behaves as though it were performing display requests on a
standard display, called the canonical display (CD). Any
differences in behavior between the canonical display and the
actual physical display in use will be hidden by BCTS; as far as
the client is concerned, the physical display IS a CD.

The canonical display is an array of character positions, each of
which can hold a displayable character and can have an associated
highlight. (See "Character Display Services" and "Highlight
Services".)

Associated with the canonical display is an active position (AP)
which is the CD location at which the next display operation will
take place. Most canonical display operations refer to or change
the active position (or both). The active position can be
controlled by the program. (See "Position Services".)

The canonical display comes in two flavors: scroll and page.
The scroll CD is a one dimensional array -- a "line" with {m}
columns. The page CD is a two dimensional array -- a "page" with

{n} lines, each of {m} columns. BCTS always supports a scroll
CD, and may support a page CD. The program can determine whether
a page CD 1is available, and can select page or scroll mode,
through the Parameter Management Service.

The size of the CD (number of columns for a scroll CD, number of
columns and 1lines for a page CD), is determined by BCTS. The

program can access these values through the Parameter Management
Service.

5.3.2 Appearance of a standard kesyboard

BCTS behaves as though it were connected to a standard keyboard
which had a standard set of keys; this standard keyboard is
called the canonical keyboard (CK). Any differences in keyboard
repertoire between the canonical keyboard and the actual physical
kKeyboard in use will be nhidden by BCTS; as far as the client 1is
concerned, the physical keyboard IS a CK.

The Canonical Terminal Server (Level 1) Page 36

Terminal Service Architecture March 5, 1982

The canonical keyboard has about 160 keys, which are grouped into
categories according to the type of 1lexeme the keys generate.
(Most real kKeyboards have far fewer keys; they use shift and
control keys to make it possible to generate several lexemes with
the same key, appropriately modified.

o Graphic keys generate graphic 1lexemes. Graphic lexemes
represent all 95 ASCII graphic charactesrs, including "blank".

o] Format effector keys generate seven of the eight format
effector lexemes. (There 1is no key which generates the
{space> lexeme.)

o} The Bell key generates the <bell> lexeme.

o] Control keys generate the control lexemes that represent
those ASCII control characters which are neither format
effectors nor BEL. (The fact that most real keyboards have a
single "control™" key which modifies the actions of graphic
keys so that they emit <controld lexemes is irrelevant for
the definition of the canonical keyboard.)

o) Display function keys generate lexemes that represent the
guaranteed canonical display functions.

Q Application function keys generate application function
lexemes. These lexemes have no predefined association with
any CT concepts or display effects. Application function

lexemes may have meaning for applications, but do not for the
CT.

o} Terminal-specific function keys are keys on physical
keyboards that have no other meaning to the CK; they
generate the <terminal-specificd> lexemes. Terminal-specific
keys are 1like application function kKeys in that they have no
predefined association with any CT concepts or display
effects. Terminal-specific keys are different from
application function Keys in that their presence is dependent

on the physical terminal type and is not guaranteed by the
architecture.

Each canonical key generates a standard lexeme. A 1list of
canonical keys and their corresponding lexemes is is figure 5.1.

Graphic, format effector, bell, control, and display function
keys are guaranteed to exist on all canonical keyboards.
Application function and terminal-specific function keys may _be
available; the program can 1inquire about their availability
through the Parameter Management Service.

The Canonical Terminal Server (Level 1) Page . 37

Terminal Service Architecture

Key Class
Graphic

Format
Effector

Bell
Control

Display
Function

Application
Function

Terminal-~
specific
function

Key Name

nan, n)n, ate.
Back Space
Horizontal Tab
Vertical Tab
Form Feed

New Line
Carriage Return
Line Feed

Bell

March 5,

Lexeme Produced

<a>, K)>, etc.

<BS>
<HT>
<VT>
<FF>
<NL>
<CR>
<LF>

<BEL>

"NUL™,

Position
Position
Position
Position
Position

IIDC‘]"’

ete.

Up
Down
Left
Right
Home

<NUL>,

{position
{position
<position
{position
{position

<DC1>,

ete.

up>
down>
left>
right>
home>

Erase Character
Erase to Beginning
of Line
Erase to End
of Line
Erase Line
Erase to Beginning
of Display
Erase to End
of Display
Erase Display
Insert Character
Insert Line
Delete Character
Delete Line

Application
Function (9...16)

Terminal dependent

Figure 5.1:

{erase character>
{erase to beginning
of line>
{erase to end
of line>
{erase line>
{erase to beginning
of display>
{erase to end
of display>
{erase display>
{insert character>
{insert line>
{delete character>
{delete line>

application
function {0...16}>

{terminal-specific
function {0...m}>

The Canonical Keyboard

by key class

The Canonical Terminal Server (Level 1)

Page

1982

383

Terminal Service Architecture March 5, 1982

5.3.3 A standard communications protocol

BCTS communicates with clients through standard PDA streams which
carry standard BCTS lexemes. BCTS provides any translation (e.g.
ASCII to EBCDIC), repackaging (e.g. SDLC framing), and protocol
(e.g. "request to send" -- M"clear to send") required for
conversation with the physical terminal. The client uses only
standard PDA stream interfaces.

5.3.4 Character display service

The character display service allows a program to display any
ASCII graphic character at the current active position. (The
active position is modified either implicitly or explicitly by
the Position service.)

There are 95 graphic characters (including blank); each is
represented by a graphic 1lexeme, for example <ad>, <A>, <=>,

{blank>. The notation <graphic> will be used to represent any
graphic lexeme.

The character display service is invoked by each of the <graphic>
lexemes.

BCTS currently supports only ASCII graphics. 1In the future, this
service may be extended to support additional graphics, including
line drawing characters, word processing characters, APL
characters, and VIDEOTEX characters.

5.3.5 ASCII Format Effector services

The format effector service allows a program to move the active
position on the display in a way that conforms to the ASCII
definitions for format effectors.

BCTS provides these services 1in response to <Kformat effector>
lexemes,

o] {BS> or <back space>

The active position is moved backward one position on the
same line.

o) <HT> or <horizontal tab>
The active position is advanced to the next predetermined
character position ("horizontal tab stop”) on the same line.
Horizontal tab stops are defined every 8 positions on a
canonical display line.

o <LF> or <line feed>

The active position is advanced to the same character
position on the next line.

The Canonical Terminal Server (Level 1) Page 39

Terminal Service Architecture March 5, 1982

o VT> or <vertical tab>
The active position 1is advanced to the first character
position on the next predetermined 1line ("vertical tab
stop"). Vertical tab stops are defined every 8 lines.

o <FF> or <form feed>
The active position 1is advanced to the first character
position of the first line of a new "form". BCTS determines
wanat constitutes a form for this terminal type.

o] <CR> or <carriage return>

The active position is moved to the first character position
of the same line.

o} <NL> or <new line>

The active position is moved to the first character position
of the next line.

0 <{SP> or <space>

The active position is moved forward one character position
on the same line.

The effect on the active position of hitting a display boundary
(bottom, left, or right) 1is in most cases the same as that
described under the "Position" service. The exceptions are for
the <NL>, <LF>, <VT> and <FF> format effectors when the canonical
display is a scroll CD. In this case, these format effectors by
definition cause the "scrolling" action associated with scroll
terminals; the effect on the (single 1line) scroll CD is to
re-initialize all its character positions to default (blank,
unhighlighted) values.

The format effectors are most useful with a scroll CD, since the
scroll CD is a model of the kind of terminal for which format
effectors were invented. When the canonical display 1is a page
CD, the actions associated with format effectors are similar to
or duplicated by actions associated with other, more general
position services. BCTS continues to supports the format
effectors for page mode because we believe that all ASCII
terminal constructs should be supported in basic class.

5.3.6 Alarm service

The alarm service 1lets the program 1invoke the canonical
terminal's "bell"™ to get the terminal wuser's attention. It's
invoked by the <belld> lexeme.

The Canonical Terminal Server (Level 1) Page u0

Terminal Service Architecture March 5, 1982

5.3.7 Position services

The position service allows the program to move thne active

position to another point on the canonical display. It has three
flavors.

o] Implicit active position advance.
(invoked by all <graphic> lexemes)
Whenever a character is placed on the display, the active
position is automatically moved forward by one. (See
"Character Display Service".) The active position 1is also
moved as a side effect of the erase line / erase display
Services. (See "Erase Services".) This kind of positioning
is supported on both scroll and page CDs.

o} Format effector positioning.
(invoked by all <format effector) lexemes)
This kind of positioning is supported on both scroll and page
CDs, although the actions of vertical format effectors (NL,

FF, etc.) are different on the different types. (See "ASCII
Format Effector services",)

o} Explicit active position movement.
(invoked by all <position> lexemes)
BCTS provides a small number of primitive positioning
operations which cause either absolute or relative active
position movement. This kind of positioning is available
only when the canonical display is a page CD.

o {position horizontal {column}>

The AP is moved to the specified column on the current
line.

o} {position vertical {line}>
The AP is moved to the same column on the specified line.

o) {position absolute {line, column}>
The AP is moved to the specified position on the display.

o] {position home>
The AP is moved to the first position on the first 1line
of the display.

o) {position up>
The AP is moved up one position.

o] {position down>
The AP is moved down one position.

o] {position left>
The AP is moved one position to the left.

The Canonical Terminal Server (Level 1) ~ Page 41

Terminal Service Architecture March 5, 1982

o) <{position right>
The AP is moved one position to the right.

The Canonical Display has boundaries. If the positioning service

is requested to move the active position outside the boundaries
of the CD,

0 the position request is ignored (the AP stays where it was),

0 the component (column or line) of the AP which has been
violated becomes undefined, and

o] any successive lexemes received by BCTS whose operation would
reference the undefined component of the current active
position will be ignored wuntil the active position 1is
positioned back within the boundaries of the CD by a <format
effector> or <position> request.

For example, a character display request is received when the AP
is at the 1last column of a scroll display. The character is
displayed, but the implicit advance is ignored, and all
successive display requests will be ignored until a <CR>, <NL> or
{FF> (which don't need to know the current column number to be
performed). As another example, a <position up> request is
received when the AP is on the top line of a page display. The

{position> request 1is 1ignored, and all successive display
requests which refer to "current 1line" will be ignored ==
{position down> and <HT>, for instance. But a {position

vertical> or <position home> will be accepted and display can
continue normally again.

The program can read the current value of the active position
through the Parameter Management Service.

5.3.8 Erase services

The erase service allows a program to erase part or all of the
display. A character position which has been erased contains a

blank instead of whatever character it held before, and has no
highlighting.

BCTS supports these primitive erase services, 1invoked by the
specified <erase> lexemes.

o) {erase character>
The character position at the active position is erased.

o} {erase to beginning of 1line>

All character positions preceding the active position on the
current line are erased.

The Canonical Terminal Server (Level 1) Page 42

Terminal Service Architecture March 5, 1982

o) {eras2 to end of line>

All character positions from the active position (inclusive)
to the end of the current line are erased.

o} {erase line>

All character positions on the current line are erased. The
active position is moved to the first position on the current
line.

¢! {erase to beginning of display>

All character positions preceding the active position on the
display are erased.

o) {erase to end of display>

All character positions from the active position (inclusive)
to the end of the display are erased.

0 {erase display>

All character positions on the display are erased. The

active position is moved to the first position of the
display.

BCTS provides these erasure services (invoked by the <erase>
lexemes) only when the canonical display 1is a page CD. On a
scroll CD, positions can be erased with a combination of <format
effector>, <define highlight {nonel}>, and <blank> lexemes.

5.3.9 Highlight services

The highlight service allows a program to specify the
highlighting to be applied to character positions on the display.

Particular highlight settings are called "visual attributes" or
"attributes".

o} Highlighting: bold, blink, underline, reverse video, etec.
o] Color: foreground and background.

o) Font or typeface
o] Probably others to be defined.

The program invokes the service by sending a <define highlight>
lexeme. BCTS will then apply this highlighting to each character
position into which it writes a displayable character, until the
next <define highlight> lexeme. For example, the lexeme sequence

{define highlight {blink}>
<A> KC>

<define highlight {bold, underscore}>
<D> <KE> <KF>

The Canonical Terminal Server (Level 1) Page 43

Terminal Service Architecture March 5, 1982

Wwill result in characters A, B, and C being displayed so that
they blink, and characters D, E, and F displayed in boldface and
with underscores (but not blinking).

The lexeme <define highlight {none}> will cause subsaquently
displayed characters to have no highlighting at all.

The program can read the set of highlights currently in effect
through the Parameter Management Service.

5.3.10 Insert/delete services

The insert/delete services allow programs to open or close space
on the canonical display. The program will use <graphic> lexemes
to put graphic characters into the space at the active position
opened by the insert service. Graphic characters will be removed
at the active position by the delete service.

o <insert character>
All characters from the active position (inclusive) to the
end of the current line are moved forward one position. The
character position at the active position 1is erased. The
character previously at the end of the line is lost.

o} {insert line>
All characters on all lines from the current line (inclusive)
to the end of the display are moved down one line. The
current line 1is erased. The previous contents of the last
line are lost.

o] {delete character>
All characters following the active position on the current
line are moved backward one character. The last character
position of the line is erased. The character previously at
the active position is 1lost.

0 {delete line>
All lines following the current line on the display are moved
up one line. The last line of the display 1is erased. The
previous contents of the current line ar= lost.

BCTS supports insert/delete services only when the canonical
display is a page CD.

The Canonical Terminal Server (Level 1) Page 4y

Terminal Service Architecture March 5, 1982

5.3.11 Visible cursor

Normally, a visible cursor 1is associated with the active
position. The cursor thus serves as visual feed back for the
terminal operator. Under some circumstances programs may wish to
update the canonical without disturbing the terminal operator by
also moving the cursor (most notable is supporting "windows",
discussed in the next section). The cursor service allows the

program to update the canonical display without moving the
cursor.

o] {bind active position)
The active position is bound to the cursor. As a result the

cursor position becomes the active position and when the
active position moves, the cursor also moves,

o} {unbind active position>

The active position is unbound from the cursor. Moving the
.active position does not move the cursor.

BCTS supports the "separate cursor" service for both scroll and
page CDs.

The program can read the current cursor position through the
Parameter Management Service. The program will also be able to

modify the visual representation of the cursor through the
Parameter Management Service.

5.3.12 Miscellaneous services

[Transparent, repeat, fterminal-specific function]

5.4 BCTS Interfaces

This section provides an overview of interfaces used by BCTS clients
to accass BCTS services.

5.4.1 Display/Keyboard interfaces (lexemes)

BCTS generates and responds to individual lexemes. It reads a

lexeme at a time from 1its input stream and per forms the
associated display service. It generates a lexeme at a time,
which it write to its output stream, in performance of a keyboard
Service.

Figure 5.2 lists the lexeme vocabulary used by BCTS. An "X" in
the column 1labeled "Scroll CD" or "Page CD" indicates that that
lexeme invokes a display service for that kind of canonical
display; no "X" means that that lexeme is ignored. An "X" in
the column labeled "CK" means that the canonical keyboard can
generate that lexeme; no "X"™ means that the CK will never

The Canonical Terminal Server (Level 1) - Page 45

Terminal Service Architecture March 5, 1982

Scroll Page
CD

Lexeme name

all <graphic> lexemes
<backspace>

<horizontal tab>

{line feed>

{vertical tab>

{form feed>

{carriage return>

<{new line>

{space>

<bell>

all <control> lexemes
{position horizontal {column}>
{position vertical {line}>
{position absolute {line, column}>
{position home>

{position up>

<{position down>

<position left>

{position right>

<erase character>

{erase to beginning of 1line>
{erase to end of line>

{erase line>

{erase to beginning of display>
{erase to end of display>
{erase display>

{insert character>

<insert line>

{delete character>

{delete line>

{application function {selector}>
{define highlights {selector}>
<bind active position>

{unbind active position>
{repeat {number}>

{transparent {byte string}>

X {terminal-spec. function {selector}>
<nil>

PP PP R) o

PRIPIDEPI AP AP DA DX X DG D Dd D 4 5 D b D e D xxxxxxxxlg

PSR PS < POPI PSPPI I PS DA DY DA DI D D DS DI DG] PI DI PSPPSR S 13
<

Figure 5.2: Lexemes used by BCTS

The Canonical Terminal Server (Level 1) Page 46

Terminal Service Architecture March 5, 1982

5

produce that lexeme.

5.4.2 Management interfaces (parameters)

[(List of all parameters and values]

.5 About the BCTS server

A functional design for BCTS will include descriptions of

o]

data structures: objects which maintain state, describe

services, or otherwise hold information needed by BCTS to
perform services;

workers: 1little servers which perform the BCTS services in

response to the receipt of display lexemes or during the
generation of keyboard lexemes.

[We're not sure that this type of functional design material belongs

in this architecture document as it's currently scoped, but here it
is anyway.]

5.5.1 Structures used in BCTS

In this section we describe the data structures used by BCTS.

5.5.1.1 The Display Structure

The Display Structure is a one-dimensional (scroll mode) or
two-dimensional (page mode) array of cells. BCTS uses it to
keep track of all changes to the physical display, because
BCTS may need to refer to the current state of the physical
display in order to perform some requested operations (e.g.,
"insert character" may require copying existing characters on
the display to new locations). A particular implementation of
BCTS may not need to maintain a display structure 1f the
physical terminal's behavior is close enough to that of the
canonical display.

5.5.1.1.1 The "Cell™"

The addressable wunit of the line and page is the cell. A
cell has several fields. Operations that manipulate cells
may cause changes in any or all fields of the cell.

o) Character
The character field of each cell contains an encoded
representation of a single graphic character. When'the
cell is mapped onto a physical display, the appropriate

The Canonical Terminal Server (Level 1) Page 47

Terminal Service Architecture March 5, 1982

graphic will be made visible in the display.posi§ion
associated with this cell. The contents of this field
Wwill be interpreted as an ASCII character value.

o] Attributes
The attributes field of each cell contains the visual
characteristics to be applied to the character when it
is made visible on a display. Attributes may include

nighlighting information ("blinking", "reverse video"),
color information (possibly foreground and backgrgund
colors), and font/typeface information ("gothic",

"jitalie").

0 State
The state field of a cell contains flags which describe
cell as a whole. One such state variable is
"undefined", which means that the character and

attribute fields may not be interpreted.

A cell which contains a blank character and a default ("no
highlighting") set of attributes is said to be "erased".

When a cell is bound to a position on the physical display,
the cell's graphic character is displayed, with the cell's
attributes, at the bound position. Within reason, the
Canonical Display Worker will emulate grapnies and

attributes that are not directly supported by the physical
terminal.

5.5.1.1.2 The "Line"

A one-dimensional array of cells is a line. A line, when
operated on by the proper rules, 7Is the scroll display
structure. The line 1is necessary in the page display
structure to define the semantics of some lexemes, e.g.,
insert line or delete line.

Lines have these characteristics.
o] They have a fixed number, <n>, of cells or length.

o The cells within a line are numbered by column numbers
from 1 to <n>.

o] A line is considered to be Worizontal, as we are used
to thinking of display 1lines on a terminal, so that
left refers to lower numbered columns, and right refers
tTohigher numbered columns. -

o Two cells of a line are considered adjacent 1if their
column numbers differ by one.

The Canonical Terminal Server (Level 1) - Page 48

Terminal Service Architecture March 5, 1982

The length of 3 line usually reflects constraints
introduced by some physical display.

5.5.1.1.3 The "Page"

A two-dimensional array of cells is called a page. A page

is the page display structure, the scroll display structure
never uses a page.

Pages have these characteristics.

o) A page has a fixed number of lines, <m>, or height. A

page whose height is 1 1is indistinguishable from a
line.

o} Cells within a page are numbered by a coordinate pair
of line and column number: column numbers are defined
above, line numbers range from 1 to <m>, where <m> 1is
the number of lines in the page.

0 A page is considered to be a vertical arrangement of
lines, as in a display of a CRT. 1In this context,

above refers to lower line numbers, and below refers to
higher line numbers.

o] Two cells of a page are considered ad jacent if their

line number is the same and their column numbers differ
by one.

The size of a page usually reflects constraints introduced
by some physical display.

5.5.1.2 The Keyboard Structure

This 1s a table that defines the relationships between
physical keystrokes and lexemes.

5.5.1.3 The active position

The active position is the location of a cell in the dgta
structure. It is BCTS's internal representation of the active
position associated with the canonical display.

The active position is expressed as the coordinates of a cell.
For a scroll display, which is explicitly one-dimensional, the
active position is a single column number {x}. For a page
display, which 1is two-dimensional, the active position is a
line and column pair {y,x}.

The Canonical Terminal Server (Level 1) Page 49

Terminal Service Architecture March 5, 1982

5.5.1.4 The cursor

When the display structure is mapped onto a physical display,
the cursor provides the terminal user a visual representation
of "where things will happen next". The cursor is maintained
within BCTS as a structure consisting of:

o] a cell position (the format is the same as for the active
position), and

o) a description of the visual representation of the cursor

(a cursor glyph). [We don't know what a good set of
cursor glyphs should be.]

5.5.1.5 The attribute register

The attribute register is a data structure which contains a
set of wvisual attributes. As <graphic> lexemes are bound to
Lo cells 1in the display structure, the contents of the

attribute register are copied into the attribute field of the
cell.

5.5.1.6 The cursor glyph register

The cursor glyph register is a data structure which contains
instructions for the display of the cursor. Whenever the
cursor is moved to a new cell, the contents of the cursor
glyph register are applied to that cell. [This will probably
be a highlight value such as reverse video or underscore;

however, we're not sure we want to rule out use of graphics as
cursor glyphs.]

2.5.1.7 The previous lexeme register

The previous 1lexeme register contains the 1lexeme received
before the current lexeme. BCTS will use this register when

processing a <repeat> lexeme. The 1initial value of the
previous lexeme register is <nil>.

5.5.1.8 The scroll/page mode toggle

The Canonical Terminal Server (Level 1) Page 50

Terminal Service Architecture March 5, 1982

5.5.1.9 The transparency toggle

5.5.1.10 Boundary violation toggles

5.5.1.11 Hardware echo toggle

5.5.1.12 Cursor-AP binding toggle

5.5.1.13 Overstrike/replace toggle

5.5.2 Workers

The model of the Basic Canonical Terminal Server consists of two

workers ("workers" are defined 1in the Concepts section of this
document). These workers are:

Lexemes To / From ~
Higher Levels of i
the Terminal Service |
1

i

o e e m e +
1 v - |
| mmmm—memo e + T P —— + |
! | Canonical ! | Canonical | |
i 1 Display | i\ Keyboard | |
| | Worker : | Worker -
R S, + Fmmm e m + |
! v - i
e g +

: -
I Commands To / From i
i the Physical Device :
v i
Figure 5.3: 1Inside the Canonical Terminal Server

The Canonical Terminal Server (Level 1) Page 51

Terminal Service Architecture March 5, 1982

0 The Canonical Display worker. This worker receives lexemes
from servers at higher levels of the architecture, modifies
the internal structures (display structurs, active position,
etc.) as indicated by those lexemes, and emulates the CD on
physical displays.

o) The Canonical Xeyboard worker. This worker takes input from
the physical keyboard, converts the input into lexemes, and
passes the 1lexemes to servers at higher 1levels of the
architecture.

The Canonical Display and Canonical Keyboard workers of the Basic
Canonical Terminal Server are discussed here in separate
sections.

5.5.2.1 The Canonical Display Worker

The Canonical Display Worker applies these rules as it
receives lexemes from above.

o} Upon receipt of a <transparent {byte-stringl}> lexeme, the
worker interprets the {byte-string} as one or more
eight-bit bytes to be sent directly to the physical
terminal. The bytes will not be transformed or
interpreted, but they may be packaged according to the
requirements of the physical terminal protocol. The
display structure, active position, cursor, and otner
structures maintained by the Canonical Display Worker are
unchanged during the <transparent> operation. A program
using <transparent> lexemes 1is responsible for resolving
any resulting difference between the physical and
canonical displays.

o Any lexeme which is not defined for this type (scroll or

page) of canonical display, will be ignored. (See Figure
5.2 for a list.)

o) If the HORIZONTAL-FAULT flag is SET, a lexeme whose
associated operation requires any references to the current
column value of the active position will be ignored. A
similar rule concerning 1line position applies if the
VERTICAL-FAULT flag is set.

o) If the lexeme passes the above tests, then the service
associated with that lexeme is performed, and the display
structure, active position, (possibly) cursor position,
and other structures are changed as appropriate.

o If the performance of the lexeme assigned a new column

value to the active position, the HORIZONTAL-FAULT flag is
reset. A similar rule applies to VERTICAL-FAULT.

The Canonical Terminal Server (Level 1) Page 52

Terminal Service Architecture March 5, 1982

0 Whether the lexeme was performed or ignored, a copy 1is

Stored in the previous 1lexeme register before the next
lexeme is examined.

[The lexeme-by-lexeme detailed descriptions of display rules,
which were present in the first draft, have been removed to a
different document. We believe that those descriptions can

now be derived 1in a straightforward manner from the BCTS
service definitions.]

5.5.2.2 The Canonical Keyboard Worker

The Basic Canonical Terminal Server provides a Canonical
Keyboard (CK) to go along with the CD. The Canonical Keyboard

Worker makes it possible for many different physical keyboards
to emulate the CK.

Tne management of the canonical kKeyboard is very simple. The
rules are simple because canonical keystrokes have no display
side effects and the Canonical Keyboard Worker maintains no
state which could modify the "meanings" of keys -- the
Sequence and timing of keystrokes have no effect whatsoever on
the rules by which lexemes are generated.

The rules applied by the Canonical Keyboard Worker are these.

o] If the TRANSPARENCY flag is SET, the Canonical KXeyboard
Worker forms incoming keyboard data into eight-bit bytes,
which are then placed one at a time inside {transparent
{byte-stringl> lexemes.

o Otherwise, the Canonical Keyboard Worker recognizes an
incoming canonical keystroke and constructs the
corresponding lexeme.,

o} The Canonical Keyboard Worker sends each lexeme, as soon
as it's generated, to servers at the upper levels of the
Terminal Service. It does not buffer lexemes.

In all cases, there is a simple one-to-one correspondence
between canonical keys and lexemes: the "A" graphic key
generates the <A> lexeme, the Position Home key generates the
{position home> 1lexeme, and so forth. See Figure 5.1, "The
Canonical Keyboard", for the key-to-lexeme correspondence.

The Canonical Terminal Server (Level 1) Page 53

Terminal Service Architecture March 5, 1982

5.5.3 Notes to the Implementor

(not part of the architectural specification)
This section provides guidelines and suggestions to BCTS

implementors about how canonical terminal emulation might be
accomplisned on physical terminals.

5.5.3.1 Display notes

The implementor of a Canonical Display Worker to support a
particular physical terminal will decide which classes
(seroll, page, or both) of canonical display to support, and
how to map the canonical display onto the terminal's physical

display. 1In general, implementors will follow these
guidelines.

o) For any terminal at least scroll CD capabilities must be
implemented.

o] The Canonical Display Worker must accept and understand
all of the standard 1lexemes. Those 1lexemes which are
defined to have no effects on the CD (e.g.
<application function>) may be discarded.

o The implementor should attempt to provide all CD
capabilities for any terminal. However, some CD
capabilities may not be reasonably or satisfactorily
emulated for a particular physical display. (Examples of
features that may not be reasonable to emulate on some
terminals are the "Insert Character" operation and the
"blinking" attribute -- imagine these features emulated on
an ASR-33.) 1If this situation occurs, those features will
not bz available to a program using the canonical display;
that information will be available to programs. The
evaluation of "reasonable" and "satisfactory" will be left
to the judgment of the implementor.

o Because of windowing considerations it's almost never
useful to provide a seroll CD if the PD is capable of
page... but 1it's mandatory anyway for those cases

(special for the future but ubiquitous now) where one CD =
one window = one process.

The Canonical Terminal Server (Level 1) : Page 54

Terminal Service Architecture

March 5, 1982

5.5.3.2 Keyboard notes

The_mapping of physical keystrokes to canonical keystrokes is
an implementation issue for each physical terminal and can not

be formally specified here. 1In general, however, implementors
will follow these guidelines.

o)

o

All physical keys should map onto canonical keys.

Physical keys that are labeled the same as canonical keys,
e.g. "TAB" or "PE1M, should have the obvious
correspondence to canonical keys. Otherwise, the
implementor should choose reasonable mappings. For
example, the key 1labeled "clear field" on a physical
terminal might be chosen to correspond to the 1"erase to
end of line" canonical key.

Physical keys which are not otherwise useful should map
onto the set of "undefined" canonical keys. For example,

kKeys labeled "AUX ON" or "PRINT" might become "undefined"
keys.

Physical keys whose actions are invisible to the CK worker
cannot and must not be used as canonical keys. For
example, a "HOME" physical key whose action is strictly
"local" (it moves the cursor but the CK Worker is not

notified that the keystroke occurred) cannot be used as a
CK key.

The terminal operator must be able to generate all CK
keystrokes, excluding the class of undefined keystrokes.
If necessary, a standard keystroke sequence will be

defined by which the terminal user can mimic any missing
canonical key.

he CK is assumed to have keys that generate <NL>, <(LF>,
and <CR> 1lexemes. Most physical Kkeyboards have only a
RETURN and a LINE FEED key, and it is customary for the
RETURN key to invoke both "carriage return" and "new line"
semantics (though not at the same time). 1If necessary, a
standard protocol will be defined by which the terminal
user can mimic all three canonical Keys using only two
physical keys.

If the physical terminal echoes all keystrokes itself, and
this feature cannot be managed or disabled, the HARDWARE
ECHO flag should be SET. The entity which would normally
handle echoing (either part of the Terminal Service, or a
client program itself) will be able to find out about this
condition and change its Dbehavior accordingly. Such
terminals won't be very satisfactory as canonical
terminals; we can't help much.

The Canonical Terminal Server (Level 1) Page 55

Terminal Service Architecture March 5, 1982

6 The Window Service (Level 2)

[This section should be viewed as a placeholder for some idgas about
windows rather than as a formal statement. We have not studied this
area much yet.]

The Window Service manages the association of many logical terminals,
in use by one process or by several different processes, and a single
canonical terminal. The terminal user can thus watch and control
several services at once from his terminal.

The Window Service provides a "switchboard" that allows:

0 many logical displays to be associated with a single canonical
display, and

o lexemes from the canonical keyboard to be associated with one of
many logical keyboards.

In the special case of "one process to one terminal" (and "one 1logical
terminal to one canonical terminal") connection, the switchboard
function of the Window Service is trivial -- the routing is automatic.
In the general case, wherein several independent processes share access
to one physical terminal, the sa2rver must

o route each incoming lexems from the canonical keyboard to the
correct process input stream, and

o) handle each display request from a process's output stream subject
to any constraints imposed by the sharing of the display.

In the most general case, each process output stream will map onto a
region of the display called a window.

We (deliberately) haven't spent much time thinking about the Window
Service. Window Services are not required in order to satisfy any of
the basic canonical terminal requirements (see PE-TI-847), so we have
left this piece for 1last. However, we are so sure that a Window
Service will be a big part of PRIME's terminal Service offering in the
future that we have made sure to reserve its place in the architecture.

Tais section of the document will outline a set of services and a set
of interfaces to those services which we currently believe should be
included in a Window Server. However, the reader should view this as a

first pass at a set of requirements for such a service, and not as a
formal statement of services to be provided.

The Window Service (Level 2) Page 56

Terminal Service Architecture March 5, 1982

tom— + B ey, + tm—— e o +
i Process 1 | | Process 2 | | Process 3 |
e — e + T + tmm— +
LIO LIO LIO LID
(stre?m A) (stream B) (stream C) (stream D)
1 1 1
| | | |
; | | |
o —— + D e . + e —— + e +
i Logical ! i Logical | i Logical | i Logical |
i Services | i Services | | Services | i Services |
e + Fmm e + e — o + R +
i i i !
| l i i
o e -+
| \ i Window Service ! / i
i \ | : / !
| N + e + fomm—— + mmmmmmem o / |
{ | i i i i
| Display/Xeyboard Switchboard i
o e e e e e e e e e e e e e e e e e e et <+
|
i
P e +
i Basic !
i Canonical Terminal !
: Service |
R il R Ty +
)
]
i
e e e +
} Physical Terminal |
1 [}
i 1
i Fommmm s Fmmmmmm e +
! i Window | Window b
i | C i B b
! fmm——————— b + | <-- Display
| i Window i\ Window | |
i i A i D P
| tmmm————— o Fmmm e —— +
| e + I
| potiririiiee i {-- Keyboard
i T T T pupupm— + '
e Ly S +

terminal operator

Figure 6.1: Many Processes; 1 Physical Display

The Window Service (Level 2) Page 57

Terminal Service Architecture March 5, 1982

5.1 Services

6.1.1vMany-to—one mapping

Each program to Terminal Service stream corresponds to one
logical terminal. The Window Service allows one or many logical
terminals to be associated with 1 single canonical terminal.
These logical terminals may belong to a single process, or to
some number of processes,

6.1.2 Windows for logical displays

Each logical terminal has a logical display. A logical display
1s seen on the canonical display only through a window maintained
by the Window Service. A window is a two dimensional region of
the canonical display, of arbitrary size and shape. Each program
display request is examined by the Window Service; it will cause
changes to the canonical display only if the part of the logical
display affected by the display request 1is currently windowed
onto the canonical display.

The dimensions of the logical display need have no relationship
to the dimensions either of the canonical terminal's display or
of the window through which the logical display is viawed. The
size of the logical display will be chosen for the convenience of
the program; the mapping of the logical display to the canonical

display, through a window, is for the convenience of the terminal
user.

At any time, some (perhaps all) of the logical displays will be
windowed onto the canonical display, while some (perhaps none)

will not be seen at all. Logical displays can exist without
Wwindows.

6.1.3 Active logical keyboard

Each logical terminal has a logical kKeyboard. Through the Window
Service, the canonical keyboard is mapped onto a single logical
keyboard at any time. The terminal user absolutely controls this
mapping. At any time he can request that his input be switched
from th2 currently active logical keyboard to the 1logical

keyboard of any other 1logical terminal associated with the
canonical terminal.

The Window Service (Level 2) Page 58

Terminal Service Architecture March 5, 1982

6.1.4 Operations on windouys

The terminal user will be able to:

o} create a window to be associated with a logical terminal,
making that logical display visible on the canonical display;

o} delete a window, making the logical display formerly seen
through that window now disappear from the canonical display;

o} move a window to a different region of the canonical display;

o] expand a window, making a larger piece of the logical display
visible through it;

o} shrink a window, making a smaller piece of the 1logical
display visible through it.

The terminal user requests these services at will through the
Human Interface Service.

6.1.5 Window "scrolling"

If the 1logical display 1is 1larger than the window currently
allocated to it, the terminal user will be able to view only a
portion of the 1logical display at any time. The terminal user
can change this visible portion by a "scrolling" operation, which
appears to move the logical display "behind" the window so that
different sections come into view. The logical display can be so
moved up, down, left, or right.

6.1.6 Window identification

For every window on the canonical display, the terminal user will
be able to readily identify the logical terminal associated with
it. (This might be done by having a constant 1label on each
window, or by having the Terminal Service display a window's
identification when explicitly requested to do so.)

6.1.7 Selecting a logical keyboard

The terminal user can specify which logical keyboard 1is to
receive his keyboard input, by pointing to a window on the
display, or by supplying the name of a logical terminal. The
latter method 1is required if the desired logical terminal isn't
currently windowed onto the canonical display.

The Window Service (Level 2) Page 59

Terminal Service Architecture March 5, 1982

6.1.8 Overlaying windows

A new window can be created, or an old one moved, so that it
partially or completely obscures another window. The obscured
window will again become completely visible when the overlapping
window is moved, or if the obscured window is itself moved.

6.1.9 Synchronous/asynchronous update

The terminal wuser can specify either synchronous or asyncnronous
display behavior for each logical display, defined as follows.

o] Synchronous: display requests received for this stream will
be performed on the logical display only if the affected part
of the logical display is currently windowed. If the request
would change an unseen part of the logical display, or if the
logical display isn't currently windowed at all, the display
request (and all subsequent ones) would be blocked until the
affected part of the 1logical display is visible on the
canonical display. The terminal user should be informed that
this blocking has happened.

o Asynchronous: display requests will change the logical
display whether it is windowed or not. The terminal user
will always be able to see the "current" state of the logical
display, but any preceding states will have been seen only if

they occurred while that part of the logical display was
windowed.

A logical display used to display a time-of-day clock would
probably be set wup with asynchronous behavior, while a compiler
producing error messages might warrant a synchronous display.

Perhaps the program should be able to make this selection 1in
addition to or instead of the terminal user.

6.1.10 Scroll "pad" for page CD

In the special case where a scroll logical display (which is a
single-line structure) 1is being used with a page canonical
display, the Window Service will maintain a 1log of previous
logical display images for each such logical display. This 1log
is called a pad; its size will be configurable by the terminal
user (within 1imits imposed by the Terminal Service). When such
a logical display is allocated a window, the window will display
the current line and as many previous lines of the pad as will
fit. The terminal wuser can scroll the pad behind the window to

view previous display images at will (see the "window scrolling”
service).

The Window Service (Level 2) Page 60

Terminal Service Architecture March 5, 1982

No such log of previous display images will be associated with

any page logical display. (Such a service could be provided
outside the Terminal Service, if desired.)

6.2 Window interfaces

This section provides an overview of the Window Service's interfaces
to the rest of the Terminal Service.

6.2.1 Display/keyboard interfaces

The Window Service reads display requests from all Logical
Terminal Servers, as they are available. Each display lexeme is
screened and translated into a sst of lexemes which would have
the appropriate effects on the appropriate window; those lexemes
Wwill be forwarded to the Canonical Terminal Server. For example,
an "erase display" request for a logical display must be
Eranslated into lexemes which will cause the erasure of that part
of the canonical display within window boundaries for that
logical display (possibly none).

The Window Service reads keyboard lexemes from the Canonical
Terminal Server, and routes them to the Logical Terminal Server
whose logical keyboard is currently designated the "active" one.
There is always an active logical keyboard. The Window Service

simply copies input lexemes to the appropriate output path; no
translation is required.

The lexeme vocabulary used by the Window Service is the same as
that understood by the Canonical Terminal Server. The Window
Service must know exactly what effect each lexeme would have on
the canonical display, and be prepared to duplicate those
effects, subject to window constraints.

Neither the Logical Terminal Server nor the Canonical Terminal
Server is aware of the existence of the Window Service.

5.2.2 Managing windows

The terminal wuser will use a set of interfaces defined by the
Human Interface Service to create, delete, move, and change
windows, to switch his input to a different logical keyboard,.and
to examine any relevant information (names, window allocation)
about the set of logical terminals associated with his terminal.

Although most programs will be wunaware of the existence of
windows, we believe that those programs which are preparad tn
take advantage of the window mechanism (the EMACS screen editor
is a good example) should be able to recommend window size and
placement on the canonical display. There will have to be some
way to resolve conflicts betwsen programs and terminal users as

The Window Service (Level 2) Page 61

Terminal Service Architecture March 5, 1982

to which windows belong where.

6.3 Other work on Windows

Windows are obviously an idea whose time is coming fast at Prime.
In the 1last year there have been several efforts to specify window
operation within the context of specific applications. 1In addition,
there are several ongoing prototyping efforts which have built
simple implementations of window mechanisms. The following is a
partial list of projects (with documentation, where available) which
have thought or are thinking about windows.

o} The Unicorn workstation architecture, described in PE-TI-917,
"Unicorn Phase I Report", by Jay Goldman, Hugo Strubbe, Doug
Voorhies, and Dick Wolfson. A simple implementation, called
Minicorn, of the Unicorn's window mechanism is described in
PE-TI-978, "Be friendly to the users: try screen-oriented
output!", by Hugh Strubbe.

o] The beginnings of a proposed Office Automation (3.X)
architecture, described in PE-TI-981, "OAS 3.X Architecture Team

Interim Report", by Lee Scheffler for the OAS 3.X Architecture
Team.

0 The Virtual Terminal Project (Research Department) has built a
prototype window mechanism, described 1in PE-TI-944, "Windows
with Text or Menus for Three Glass TTY's", by Peter Stein, and
PE-TI-945, "A Virtual Terminal System for Fox, Beehive, and HDS
Terminals", by Ilya Gertner and Peter Stein.

o] The CASE requirements specification includes some terminal user
requirements for window operation; see PE-TI-871, "CASE
Requirements Specification”, by the CASE Development Team.

0 The EMACS screen editor is a single process which is capable of

dividing the physical display 1into several independently
operating windows.

The Window Service (Level 2)

Terminal Service Architecture March 5, 1982

7 The Logical Terminal Server (Level 3)

Level 3 is the "top" level of the Terminal Service. This level is the
closest to the application program, and farthest from the physical
terminal. The server at this level is called a the Logical Tarminal
Server, or LTS; it provides a set of value-added services on top of

the standard display and keyboard services available from the server at
level 1.

The Logical Terminal Server acts as a filter operating upon the input
and output streams which connect the program to the canonical terminal.
A client of the LTS invokes output services by sending it standard
display lexemes; the LTS will apply some set of transformations to
these lexemes, and send the lexemes so produced onward to lower levels
of the Terminal Service. The LTS provides input services by applying a
different set of transformations to the lexemes it receives from the
rest of the Terminal Service, sending the output of that transformation
~onward to the program. The filtering job done by the LTS may be quite

simple (only a few lexemes are altered) or quite complex (incoming and
outgoing streams differ radically).

To the client, the LTS appears to modify the behavior of the canonical
terminal. It can add a service which the CT doesn't provide directly
(as long as the LTS can combine existing CT primitives to get the
desired effect). It can appear to change the way in which CT services
operate, by slightly changing the set of lexemes sent to or received
from the Canonical Terminal Server. This apparently-changed behavior
of the CT results in the appearance of what we call a logical terminal.

There are many possible services that can be provided by a 1level 3
server. The set of services that we will provide is intended to

satisfy the requirements stated in PE-TI-844, "Canonical Terminal
Requirements". We have been calling this set the "General Purpo§e
Interactive Terminal Services" or GPITS, for short. The name 1is

subject to change without notice! An overview of the sarvices provided
within GPITS will be presented later in this section.

GPITS will be the standard terminal support environment available to
software builders using PRIME computers. Software builders can replace
GPITS by either an extended version of GPITS which contains additional
services, or by a completely new package of services intended to
provide the appearance of a different terminal support environment and
a different logical terminal. Different level 3 servers could supply
text editing services (including movement of text blocks within the
display) or forms mode services (including definition of protected
fields). This possibility is discussed in a later section.

The Logical Terminal Server (Level 3) Page 63

Terminal Service Architecture March 5, 1982

7.1 Invoking the right Level 3 service package

[At LIO open? Specified by the program?]

7.2 The GPITS Services

The primary source for the definition of GPITS services has been the
set of requirements presented in the Canonical Terminal Requirements
document. We have added a few things (e.g. the "phantom column"
service) which we feel are valuable additions to a general terminal
service package.

This section provides only an overview of the services GPITS will
provide. Detailed specifications of all services, including the
interactions among them and the management interfaces used to invoke
and control them, will be developed for a separate document, the
Terminal Service Functional Specification.

7.2.1 Discard Output

The terminal wuser can request that the Terminal Service discard
all output lexemes. When this service is in effect, all output
lexemes from the program and all echoed lexemes generated within
GPITS will be discarded within GPITS, without being sent to lower
levels of the Terminal Service.

Discarding of output normally happens without the knowledge of
the program, and is strictly for the convenience of the terminal
user. However, a program will be able to request that particular
output messages (important prompts or error messages) be exempt
from this service, so that they may be displayed even when the
terminal user has requested discarding.

This service is normally turned on and off from the keyboard by
the <control-0> 1lexeme. The program or terminal user can change
the lexeme which invokes this service through the Parameter
Management Service.

7.2.2 Suspend/Resume Output

The terminal user can request that the Terminal Service suspend
or resume processing of output lexemes. When output is
suspended, GPITS continues to accept lexemes from the program but
will neither operate on them nor send them on to other levels of
the Terminal Service. When output is resumed, GPITS will resume
normal output processing from the point at which it was
Suspended. Programs will not be able to override the terminal
user's suspend and resume requests.

The Logical Terminal Server (Level 3) Page 54

Terminal Service Architecture March 5, 1982

When this service is in effect, the processing of output 1lexemes

from the program and echoed lexemes generated within GPITS will
be suspended. —

The terminal user normally requests "suspend output™” with
{control-S>, and "resume output" with {control-Q>. The program
or terminal user can change the lexemes which invoke this service
through the Parameter Management Service.

7.2.3 Pagination

The terminal user will be able to define arbitrarily sized
collections of "lines", called "pages". When GPITS has sent a
page's worth of 1lines to the display, GPITS will suspend
processing on any output received from the program until the
terminal user requests the next page.

The pagination service applies only to consecutive 1lines of
output text from the program. Anything echoed by GPITS in
response to Kkeyboard input will reset the count.

A "wrapped" output line (sees "Line Wrapping Service") will be
counted as two or more lines for the purpose of determining
end-of-page.

The service will be available only when the program has requested
a scroll class display; paginaftion will not be done when the
terminal is being used as a page class display. This service is
normally useful only when the physical terminal is a CRT or other
device capable of displaying some fixed number of lines at once

(such as a letter quality printer which operates on individual
sheets of paper.

The pagz size will normally be chosen by the Terminal Service to
correspond to the size of the physical screen or page, or, if the
Window Service is active, to the size of the window allocated to
this logical terminal. However, the terminal user will be able

to set the page count to any other value through the Parameter
Management Service.

7.2.4 Attentions

The attention service provides a mechanism for allowing
attentions to be invoked by a terminal user. [For now, we are
discussing attentions in terms of PRIMOS on_unit invocations;
this may not be appropriate in the PDA “environment.] The
attention service provides:

o [Some undetermined number of] configurable attentions. Each
configurable attention is a mapping between a lexeme and an
on unit.

The Logical Terminal Server (Level 3) Page 55

Terminal Service Architecture March 5, 1982

0 A mechanism to allow the program to correlate the occurrence
of the attention with a position in the input stream. (For
instance to allow lexemes typed before thes attention %o be
flushed or otherwise treated differently.)

Programs will be able to enable and disable any and all GPITS
attentions.

The attention service by default recognizes one attention. The
default attention 1is invoked by <control-P> and will cause a
process's QUITY on unit to be signalled.

The invoked on-unit will be supplied with a terminal identifier
and an attention identifier. [Possibly other information.]

7.2.5 Data Forwarding

The data forwarding service allows a program to recommend how the
Terminal Service 1is to block lexemes for transmission over the
medium between GPITS and the program. The maximum program
responsiveness, every lexeme transmitted to the program as soon
as possible, carries the highest transmission cost. The minimum
program responsiveness, lexemes grouped together into blocks at
the server's discretion, carries the lowest transmission cost.
By appropriate use of the mechanism that controls the blocking,
programs may trade-off responsiveness for cost.

The default behavior of the data forwarding service is to block
lexemes into "lines" (strings of 1lexemes delimited by a <new
line> lexeme). Programs may set up different blocking rules by
specifying other 1lexemes than <new 1lined> to be used as

"triggers". A set of trigger lexemes may be designated through
the Parameter Management Service.

GPITS may at its discretion, and for any reason, transmit a block
of lexemes anytime before a trigger is encountered in the input.
The only service guaranteed by data forwarding is that no delay
Wwill occur after GPITS encounters a trigger.

7.2.6 Echo

The echo service allows a program to specify the style of echoing

which the Terminal Service is to perform on its behalf. Three
Styles are available.

o] Immediate echoing. This is what PRIMOS does today when "full

duplex" has been requested. (But see also "Lexemz Mapping",
below.)

The Logical Terminal Server (Level 3) Page 56

Terminal Service Architecture March 5, 1982

o) No echoing at all. This is what PRIMOS does today when "half
duplex" has been requested. The program assumes
responsibility for any =achoing.

o Deferred echoing. Echoing 1is performed by the Terminal
Service, but can be controlled by the program. 1in a way that
allows orderly formatting of type-ahead. GPITS will suspend
echoing when it encounters a "suspender" lexeme, and will
resume echoing on command (via the management interface) from
the program. The program may designate a set of lexemes to

be used as suspenders -- this is normally but not necessarily
the same as the set of triggers.

A related service (see Lexeme Mapping) will allow programs to

specify a 1lexeme or string of lexemes to be used when any lexeme
is echoed.

Most programs will request immediate echoing, and continue (as
today) to have the Terminal Service handle all echoing.

Deferred echoing also makes the Terminal Service handle the work
of echoing, but gives the program some control over when and how
it's done. It can be used to create the appearance that
characters are echoed as they are read by a program, instead of
being echoed as they are typed by the terminal user. 1TIn a simple
example, the <new line> lexeme will be both a suspender and a

trigger 1lexeme. After processing a <new line>, GPITS will
suspend echoing of input lexemes until the program tells it to
resume echoing. This gives the program a chance to write any
output (prompts, etc.) to the display bafore the typed-ahead
characters are echoed. This allows orderly formatting of input

and output on the display. The program even has a chance to
change the echoing mode (through the management interface) before
echoing is resumed. Using this feature, a program can cause a
password not to be echoed even if it was typed ahead.

7.2.7 Lexeme Mapping

Lexeme mapping allows a program to specify a mapping or
translation from one 1lexeme to another (or to a string of
lexemes). GPITS provides three points at which this mapping
takes place.

o Lexemes received from the program are translated according to
a display lexeme map before being forwarded to the canonical

display.

o) Lexemes received from the canonical keyboard are translated
according to a input lexeme map before being forwarded to the
program.

The Logical Terminal Server (Level 3) Page 57

Terminal Service Architecture March 5, 1982

o] Lexemes received from the keyboard are translated accorqing
to an echo 1lexeme map before being echoed to the canonical
display.

The three maps may be manipulated Separately by the program,
through the Parameter Management Service. A default mapping of
"lexeme in, lexeme out" is provided.

The lexeme mapping service can be used to make a "soft keyboard";
to change the representation of a lexeme when it's echoed (e.g.
to provide control character expansion); or to selectively
remove lexemes from the input stream (by making them map into the
<nil> lexeme).

7.2.8 Local Editing

The local editing service allows the terminal user to examine
and/or make changes in data to be forwarded to the program,
without the involvement of the program. The effects of changes
to the 1input data are appropriately reflected on the display, in
a manner suitable for the terminal in use (e.g. "back space,
blank, back space"™ on a CRT, or "backslash, erased characters,

backslash" on a hard copy terminal). GPITS will determine what
is "suitable".

GPITS provides a simple set of editing services:
o) erase (removes the single previous lexeme),

o} kill (removes all lexemes not yet forwarded to the program),
and

o} examine (causes the redisplay of all 1lexemes not yet
forwarded to the program).

The GPITS editing service is intended to handle local editing of

"lines" -- strings consisting of graphic characters and format
effectors, terminated by <new line> or the equivalent. The
editing service 1is closely related to the data forwarding
service; only lexemes which GPITS has not yet forwarded -- that
is, those processed since the previous "trigger" -- can be
edited.

The undoing of display effects will not be guaranteed for certain
lexemes (e.g. <position>, <erase>).” More sophisticated flavors
of local editing may be defined for future versions of GPITS.

The terminal user will normally invoke the three 1local editing
services through a set of lexemes to be specified. The terminal
user or a program will be able to designate different lexemes
through the Parameter Management Service.

The Logical Terminal Server (Level 3) - Page 68

Terminal Service Architecture March 5, 1982

7.2.9 Quoting

The quoting service allows a terminal wuser to specify that a
lgxeme from the keyboard is to be sent directly to the program
without interpretation by GPITS. It can be wused to enter a
lexeme as text that would normally be trapped by GPITS as a
request for the erase, kill, attention, or other service. Such

lexemes will still be subject to the data forwarding, echoing,
and lexeme map services.

7.2.10 Variable Tabs

The variable tab service allows a program to specify a set of
horizontal tab stops which may be different from the fixed
horizontal tab stops used by the canonical display. When this
service is in effect, GPITS will convert a <horizontal tab>
lexeme into a lexeme string which will cause the canonical

display to move the active position to the next program-defined
tab stop.

7.2.11 Variable Form Feed Handling

[deleted]

7.2.12 Line Wrapping

When the 1line wrapping service is in effect, a graphic character
displayed in the last column of a line will cause an automatic
<{new line> to be inserted in the output stream. This will
circumvent the normal behavior of the canonical terminal, which

is to discard successive characters after an end-of-1line boundary
violation.

The program or terminal user can turn this service on or off
through the Parameter Management Service.

7.2.13 Phantom Column Line Wrapping

Normal line wrapping generates a <new line> after a graphic
character causes an end-of-line condition. If the next displayed
lexeme is a (real) <new line>, the display will appear to have an
"extraneous" blank line.

When the GPITS phantom column service is in effect, the automatic
{new line> will be postponed until the next display lexeme 1is
received, and will be omitted entirely if that next display
lexeme is a format effector or position 1lexeme. This will
prevent the extraneous blank 1lines from appearing whgn the
displayed text is exactly as "wide" as the logical [?]1 display.

The Logical Terminal Server (Level 3) Page 59

Terminal Service Architecture March 5, 1982

7.3 GPITS Interfaces

This section provides an overview of interfaces used by GPITS
clients to access GPITS services.

7.3.1 Service Interfaces (Lexemes)

GPITS receives a lexeme at a time from the program output stream.
It sends groups of lexemes to the program input stream, where the
grouping is determined by the Data Forwarding Service. (One
possible grouping is single lexeme at a time.)

The lexeme vocabulary used by GPITS is exactly the same as that
of the Basic Canonical Terminal Server (BCTS). A1l lexemes
defined for BCTS in a previous section will be accepted by GPITS
for either 1input or output processing. However, some will be
interpreted by GPITS as requests for services and will be removed
from the stream between program and canonical terminal. For
example, a <horizontal tab> laxeme received by GPITS from either
the logical kesyboard or the program will be interpreted as a
request for the variable tab service. (GPITS may or may not sand

a <horizontal tab> to the <canonical display in performing this
service.)

7.3.2 Management Interfaces (parameters)

[(List of all parameters and their acceptable values -- to be
specified]

7.4 About the GPITS server

A functional design for GPITS will include descriptions of

o} data structures: objects which maintain state, describe

services, or otherwisa hold 1information needed by GPITS to
perform services;

0 workers: 1little servers which perform the GPITS services in

response to the receipt of display lexemes or during the
generation of keyboard lexemes.

[We're not sure that this type of functional design material belongs

in this architecture document as it's currently scoped, but here it
is anyway.]

The Logical Terminal Server (Level 3) Page 70

Terminal Service Architecture March 5, 1982

7.4.1 Structures

[Internal structures maintained by

GPITS -- this section to be
specified later.]

T.4.1.1 Toggles to turn services on/off

[Pagination mode, wrap/truncate mode, phantom column mode,
echo mode, etc.]

T.4.1.2 Tables to map lexemes to service invocations

[(Suspend table, attention table, trigger table, output control
table, edit control table, quote table.]

7.4.1.3 Auxiliary program-specified info for services

[(Variable tab setting, lexeme maps, attention mode.]

7.4.1.4 Internal structures used by GPITS during services

[Output state, echo state, lexeme buffer(s), data forwarding
buffer.]

7.4.2 Workers

We model the GPITS server as consisting of four cooperating

workers. (Workers or mini-servers are introduced in the Concepts
section.)

GPITS normally deals with four single-directional streams: a
pair (one input, one output) which convey data between a program
and a "logical terminal" (meaning GPITS), and a pair (one from
keyboard, one to display) which convey data between GPITS and the
physical display, via the rest of the Terminal Service.

A program may elect to connect only a single input or a single
output stream to a logical terminal. Even when this is so, GPITS
actively maintains the pair which connect GPITS with the rest of
the Terminal Service. This is because several GPITS services are
defined to link the logical keyboard with the 1logical display,
independent of any streams between the program and the logical

terminal. For instance, the definitions of echoing, local
editing, and discard output allow the terminal user.to affegt tbe
logical display from the 1logical keyboard. This behavior 1is

guaranteed whether or not there is a stream from the program to
the logical display.

The Logical Terminal Server (Level 3) Page 71

Terminal Service Architecture March 5, 1982

! Lexemes -

i From / To Program |

! via Logical I/O i

v |
o e e e e e et ————— +
1] ~ |
1 [} |
i v | |
R + Fmmm e e + tmmmmmm————— o + |
| i Output | <-! Deferred !<-! Keyboard | |
i | Control | ! Echo i | Input P
e + Fommmm e mm e + | Worker P
| b et +
!] | ~ !
|] 1 i
! vV v | |
S + ! !
i\ | Display ! : !
i 1 Output i | |
i | Worker ' : :
| +mm—mmmmmmmm + | |
1 1 | 1
| | | I
i v i i
o e e e e et +

l Lexemes -

i From / To Lower Levels i

v of the Terminal Service :

Figure 7.1: Inside the GPITS Level 3 Server

As before, remember that this is not intended as an internal
design of the GPITS server. The decomposition of GPITS into
workers is just a notational convenience; we found GPITS too
complex to describe as 3 single unit, and easier to think of as
asynchronously operating, independent subunits. We could easily
have chosen a different decomposition resulting in more or fewer
workers with different functions. The only significant feature
of any description of GPITS will be its specification of what

operations are to be performed on which lexemes and in what
order.

There are four workers in GPITS (see Figure 7.1).

The Logical Terminal Server (Level 3) Page 72

Terminal Service Architecture March 5, 1982

7.4.2.1 The Display Output Worker

This workgr proyides all services which affect the terminal's
display, including variable tabs, the displayed effects of
local editing, and the phantom column service.

The Display OQutput Worker receives lexemes from the program
output stream and from the internal echo path. It sends
completely-processed lexemes to lower levels of the Terminal
Service, where they will act on the "private canonical
display" associated with this logical terminal.

This worker follows these rules:

o] Lexemes from the 2cho path only are checked to see if they
are invocations of the Local Editing service. If so, the
worker makes the appropriate changes to the display by
geénerating a set of lexemes which will have the desired
effect on the private canonical display.

o] Lexemes are run through the appropriate map (there is a
different map for program output and echo paths). For
example, a <control-C> lexeme may be mapped to the
two-lexeme string <*> <KC>.

o] Miscellaneous display services (line wrapping, variable

tab) are applied. Lexemes may be changed or created in
the process.

o) Finally, the completely-processed lexeme(s) will be sent
to the rest of the Terminal Service.

This worker keeps track of anything it will need to perform
the guaranteed services. For instance, the current active
position on the private canonical display is nesded for 1line
wrapping; the active position before a <horizontal tab> was
performed may be needed in order to erase that tab.

7T.4.2.2 The Output Control Worker

This worker controls the flow of lexemes =ither from the
keyboard (via the echo path) or from the program to the
display. It follows thesz rules:

o If the terminal wuser has invoked the Suspend service
(a.k.a. XOFF), both paths are blocked and nothing goes
through until the user Resumes output.

o] If the terminal user has 1invoked the Discard service,

lexemes from either path are read and thrown away instead
of going to the display.

The Logical Terminal Server (Level 3) Page 73

Terminal Service Architecture March 5, 1982

o If an end-of-page condition (as defined by the Pagination
service) is in effect, output from the program is held up
until the terminal user gives his 0.K. to continue.

0 Otherwise, in normal operation, this worker Jjust passes

lexemes from either path straight through to the Display
Output Worker.

7.4.2.3 The Deferred Echo Worker

This worker provides the (optional) synchronization of echoing
with program control. It is essentially a valve which starts
and stops the movement of lexemes from the keyboard (via the
Keyboard Input Worker) to the display (via the Output Control
and Display Output Workers). When normal echoing 1is in
effect, the valve is always open and this worker does nothing
but move lexemes along the echo path. When deferred echoing
is in effect, this worker closes the valve after a2 suspend
lexeme has gone through, and reopens it when the program so
requests.

7T.4.2.4 The Keyboard Input Worker

This worker processes lexemes received from the lower 1levels
of the Terminal Service. It sends completely-processed
lexemes to the program, blocked according to data forwarding
considerations, and sends to-be-echoed lexemes to the Display
Output Worker, along the internal echo path.

The worker follows these rules whenever a lexeme arrives:

o) If this is a "quoting" lexeme, the next 1lexeme will be

treated as text and will not be examined for service
invocations.

0 If this is an M"attention" lexeme, the appropriate
attention will be signalled for the program. The lexeme
may be left in the stream so that all input before the

attention can be easily identified (e.g. to be flushed)
by the program.

o} If this 1is an T"output control" lexeme (invokes the
Suspend, Resume, Discard service), the Output Control
Worker must be informed of a change in state.

o} If this is a "local edit" lexeme, the appropriate editing
service should be performed on any lexemes not yet
forwarded to the program.

The Logical Terminal Server (Level 3) Page T4

Terminal Service Architecture March 5, 1982

o] Otherwisz, for normal lexemes, the worker will send a copy
of the lexeme to the echo path, apply the 1lexeme mapping

service, and put the resulting lexeme(s) 1into a data
forwarding buffer.

o} Whenever a "trigger" lexeme has been buffered, the worker
will send all accumulated lexemes to the program.

[The STROMA descriptions of worker algorithms, which were present
in the first draft, have been moved to a separate document.]

7.4.3 Notes to the Implementor

(not part of the architectural specification)

This section provides gﬁidelines and suggestions to Terminal
Service implementors about how the services defined by GPITS
might be provided in various terminal support configurations.

[Might distribute GPITS work among Several components for
something small 1like FALCON ... local editing effects may be

different for different underlying terminals (hardcopy vVs.
screen) ...]

The Logical Terminal Server (Level 3) Page 75

Terminal Service Architecture March 5, 1982

8 The Parameter Management Service

[(This section is very preliminary and will be filled in later.]

The Parameter Mangement Service provide programs with two services:

o} An ability to manipulate parameters within a logical terminal,
i.e., within a stream, controlling the behaviour of that logical
terminal.

0 Logical Terminal structure independence, i.e., parameters appear to
belong to the logical terminal as a whole (a program need not know

what components of the Terminal Service actually use those
parameters.

Parameters have special characteristics. These are:

o) Parameters and structures are not the same things. Structures are
implementation dependent, parameters are architectural concepts.
Structures will be visible or interesting only within the Terminal
Service; parameters are externally visible.

o Parameters have unique names, independent of the implementation of
terminal service.

o Each parameter has an owner. Only the owner of a parameter may
manipulate the value of a parameter.

8.1 The Parameter Management Servers

Early on, we realized that parameters were associated with
particular portions of the terminal service. For example, if a
parameter exists that defines the size of a window for a strean,

that parameter 1is most likely associated with the window services.

This type of association argued 1in favor of particular service
owning particular parameters. At the same time, we felt that the
program should not have to know that parameters were associated with
particular services, i.e., we wanted to present the impression of a
"flat" name space for parameters. The structure that we have
defined combines both of our desires for parameter mangement:

o] Parameters "owned" by only server and

o] a flat name space for programs manipulating parameters.

The Parameter Management Service Page 75

Terminal Service Architecture March 5, 1982

o e e e e e +
i Program ;
o e e e e e e e e e +

[} |

1 i

] [}

|]

1 [}

| |

! Rt T T P +

i | Service to manage |
i { parameters !
i | controlling ... |
o e e + e e |
| i-1 Logical Terminal i
P e e + | Services |
| B e TR |

1 1

| |

| |

| |
e T b gl + | == |
: | ==—=== i Window Services !
P e + === mm e |

1 1

| 1

t 1

| |

1]

| 1
o L + e m e i
l i-1 Canonical Terminal |
R ittt T T Py + | Services |
T PE . +

]
Terminal
Operator

Figure 8.1: Inside the Parameter Management Service

8.1.1 Lexemes for Parameter Management

[We anticipate a parameter set/read protocol which is completely
independent of the transfer of data lexemes. We would like to
See parameter names defined in common for all PDA services, not
just the Terminal Service, at least for common items.]

o} {set {parameter-name} {parameter-value}l>
Specifies a parameter name and a value for that parameter.
The format of the parameter value will vary depending on the
data type of the parameter name being specified.

The Parameter Management Service Page 7T

Terminal Ssrvice Architecture

o) {read {parameter-name}>

Requests the value of the specified parameter.
the parameter value will vary depending on the data

the parameter.

March 5,

o {response {parameter-name} {parameter-value}>

The value of the parameter specified by a <read> lexeme.

8.1.2 Protocol for Parametar Management

[to be supplied]

8.1.3 Notes to the Implementor

[(probably need examples of the three
management interaction: from program,
logical terminal component].

The Parameter Management Service

1982

The format of
type

of

types of parameter
management component,

Terminal Service Architecture March 5, 1982

9 The Terminal Service Overseer

[This section is very preliminary and will be filled in later.]

[Mgnaging streams in the PDA environment is not well understood. Thus
this section will not discuss how services are achieved. We will talk
about the types of services that must be provided in order to make

things work,. We expect much of the requirements definition of these
services to come from two sources:

o The functional design of the logical terminal.
o) The functional design of the Human Interface Services.]

The Terminal Service Overseer serves two distinet c¢lients: other
components inside the Terminal Service and clients outside the Terminal
Service. Services provided to clients within the Terminal Service tend
to be interfaces to the environment outside the Terminal Service.

Services provided to clients outside the Terminal Service tend to
manipulate streams.

9.1 Services

9.7.1 Initialization Services

There are two types of initialization service:
o] Canonical Terminal Initialization and
o Logical Terminal (or Stream) Initialization

CT Initialzation deals with selecting the correct set of CT
Services (for example what kind of CT(s) to provide? Basic,

Graphics, or Forms CT), connecting a CT to the correct window
services, etec.

LT Initialization allowis Logical I/O to select a logical
terminal service package, connecting a terminal user to an
appropriate human interface and job management service, resource
allocation for data bases, etec.

9.1.2 Security Service

Part of the reason for the Terminal Service Overseer is the need
for the Human Interface Service (and potentially other services)
to control the state of "other" logical terminals. To keep this
capability from being mis-used the Terminal Service will require
some kind of validation before allowing the use of the more
potentially destructive services.

Terminal 3Service Overseer Page 79

Terminal Service Architecture March 5, 1982

9.1.3 Stream Manipulation Services

There are probably ¢two types of services related to stream
manipulation.

0 Stream Status Services
o} Stream Control Services

Stream Status Services would allow outside clients to request
information about streams, how many streams does a user have,

what are they connected to, how many 1I/0 operations have been
performed, etc.

Stream Control Services would allow outside clients to modify the
state of streams that are (1) possibly not owned by the client
and (2) certainly not the normally referenced stream (in the case
of the Human Interface Service managing parameters, stream
control services would have to be invoked to change parameters in
"someone else's" or "some other" stream).

9.1.4 Attention Delivery Service

Allows the Terminal Service to deliver attentions (at 1least
QUIT$) to processes in the "outside" environment.

9.1.5 Process Status Service

Allows the Terminal Service to request information about the
outside environment. [For those people who are familiar with
DECsystem-10/20s we are talking about {control-T>.]

9.2 The Terminal Service Overseer

9.3 Notes on Implementation

o The Terminal Service Overseer provide the Terminal Service with
environmental isolation. We can't say much about the needs of
the Terminal Service (we haven't done a functional design), we
can't say much about the needs of clients outside the Terminal
Service (we haven't designed a human interface) but the Terminal

Server Overseer is where the two, possibly conflicting, set of
needs meet.

Terminal Service Overseer Page 80

Terminal Service Architecture March 5, 1982

10 The Human Interface Service

[We have done no work in this area. We expect requirements Ffor this

service to come from the group specifying user interfaces in a PDA
environment.]

Human Interface Service Page 31

Terminal Service Architecture March 5, 1982

11 Proposal for further application of the architecture

One of the unsatisfying things about this document is the 1lack of an
overall structure that shows how all types of terminals, forms, basic,
and graphics, are supported by the Terminal Service. This section
discusses the larger view of the Terminal Service.

In this section, we start with the assertion that the canonical
terminal level of the Terminal Service Architecture describes a model

of the appropriate type of terminal. The only canonical terminals we
will define are:

0 The Forms Canonical Terminal.
[fields as primitive units]

o) The Basic Canonical Terminal.

(described at 1length elsewhere in this document]. [cells as
primitive units]

o] The Graphics Canonical Terminal.
[pixels as primitive units.]

The Window Server understands the structure of each type of canonical
display; [whether there 1is only one window server that knows about
every possible CD structure or a window server per CD structure 1is a
anyone's guess right now.] the kind of primitive units it's made of,
the size of the array of primitive units, and the rules which the
canonical display uses to manipulate the primitive units. The Window
Server takes lexemes for operations describing operations on the
canonical display and truncates or transforms them according to the
window bounds. The lexemes received by the Window Server always deal
with the primitive unit of the canonical display, e.g., the window
server never sees forms canonical terminal lexemes intended for a
graphics canonical terminal. In other words, the Window Server
handling a graphics canonical terminal doesn't know about cells
(primitive unit of the basic canonical terminal), and the Window Server
handling a basic canonical terminal doesn't know about fields
(primitive unit of the forms canonical terminal).

Obviously a canonical terminal whose primitive units are pixels can be
used to display the "larger" constructs which are cells (aggregates of
pixels) and fields (aggregates of cells). But the emulation of these
larger primitive units is only possible if an architectural component
of the Terminal Service Architecture above the Window Server is willing
to convert cell or field lexemes into pixel 1lexemes. A more subtle
point, a canonical terminal whose primitive units are fields cannot
display anything "smaller" than fields; cells and pixels cannot exist
on a forms canonical terminal.

Lets look at a resal example. Suppose the physical terminal is capable
of supporting field operations in "forms" mode and cell operations in
"character-at-a-time" mode (the OWL, PT45, and WREN all provide both
capabilities.) Then the implementor of the canonical terminal
"drivers" has a choice when providing forms support for these

Proposals for further applications Page 82

Terminal Service Architecture March 5, 1982

terminals.

o) The implementor can choose to implement a Forms Canonical Terminal.
A forms CT takes advantage of the block and field capabilities of
the terminal and gains substantial performance improvements.
However, mapping canonical fields onto the fields understood by the
physical terminal may be difficult and a forms canonical terminal
cannot provide basic canonical terminal-style access to the
physical terminal while the physical terminal is a forms canonical
terminal, e.g., no windows to the PDA command processor.

o} The implementor can choose to implement a Basic Canonical Terminal,
putting the Forms canonical terminal functions 1in a separate
field-cell conversion layer (see the "Basic Canonical Terminal"
picture which follows). This approach gains flexibility; any kind
of field can be fairly easily emulated with cells and the terminal
user has access to different kinds of windows (scroll, page and
forms) all at the same time. An added attraction for the terminal
user is that Forms Canonical Terminal functionality is available
when the Basic Canonical Terminal is supporting a FOX, DM10, ADM3A,
or other dumb terminal. The terminal user pays for this kind of
flexibility by losing the ability to use those features of the owWL,
PT45, WREN, or whatever, which could save CPU cylces and/or 1line
transmission time. Terminals 1ike the OWL, PT45, and WREN

typically cost a 1little more than dumb terminals so the terminal
user looses a little money also.

[Existence of cheap terminal controllers or concentrators that
provide the Terminal Service may change the cost picture.]

(We need to understand how swapping between Forms and Basic canonical

terminals works when the terminal (e.g. WREN) is being used first for
one, then for the other.]

The several pages show pictures of the Terminal Service Architecture
(without the Management Server and Human Interface Service) with the
our proposals (and alternates) for handling the three kinds of
canonical displays: Forms, Basic, and Graphics.

Proposals for further applications Page 83

Terminal Service Architecture March 5, 1982

To/from application

FORMS Logical

| i FORMS Logical :
Terminal Services | ! |

Terminal Services

R R . + +----~———-: ————————— +
i {-- field lexemes --> |
i |
v v
B il L T Ry, +
' Field Window Services |
R it Ty +

! FORMS Canonical i
i Terminal Services |

Figure 11.1: Terminal Service Architecture with
Forms Canonical Terminal

Notes:

0

Proposals for further applications

The Forms CT is block mode only. You send it blocks of field

lexemes and it will return the same. The '"turn" concept is
probably built in.

The Forms CT deals only in "whole" fields, not "partial" ones. The
windows must contain entire fields, they can't b2 split. The
"logical display" seen from level 3 and up may be larger than the
window as long as this restriction is obeyed. (You would probably
have top and bottom windows rather than side by side ones.)

Auto tabbing, a relationship between fields, may need to involve
window services.

Scroll/page behavior is not supported on the Forms CT; there can
be no page windows miXed 1in with the forms windows. (Of course
this behavior may be emulated by an application package above the

logical terminal services which works 1like DPTX/TSF's '"data
handler".)

It's possible we nay want different definitions of the Forms CT,
e.g. for TP vs. DPTX, or for the Forms Logical Terminal Services.

Terminal Service Architecture March 5, 1982

To/from application

1
]
i
el R R + '
i FORMS Logical | i
y Terminal Services | i
T PP + i
B i
E {-- field lexemes E {-=- cell lexemes
| |
v i
Fmm—e,r - - + e, = - +
i field-cell | i Basic Logical |
i converter i i Terminal Services |
A + i (GPITS) |
e +
| N
! {-- cell lexemes --> i
1]
|]
v v
o e e +
| Cell Window Services |
L e Ty, +

| Basic Canonical |
i Terminal Services !

Figure 11.2: Terminal Service Architecture with
Basic Canonical Terminal

Notes:

o The "field-cell" converter gets a character at a time in from the

Basic CT and performs all echo, edit, etc. behavior associated
with the Forms CT.

o) It's now possible to have field and cell windows mixed. TIt's also
possible to have an incomplete field in a window as long as it
contains complete cells! The field-cell converter will turn a
field display request into a string of cell display requests; the
Window Server will just truncate to the appropriate cell.

Proposals for further applications Page 85

.

Terminal Service Architecture March 5, 1982

To/from application
[}

FORMS Logical
Terminal Services

+
]
|
|
I
|
1
1
|
[}
¥
1
|
1
|
l
I
|
I
1

+

[}
1
:
.‘
|
i
1
1
~ |
; <-= field {(-- cell | <=- pixel
i lexemes lexemes i lexemes
v i
S e . + gy + '
i field-cell | i Basic Logical i |
i converter | i Terminal Services | i
e —m e + ' (GPITS) | |
° Fom e + |
i - |
I {-- cell lexemes -=> . i
v v |
e T . + e DT ——— + R i T Ty +
i pixel-cell | I pixel-cell | i Graphics Logical |
| converter | i converter | i Teminal Services |
Fmm e + Fmmm e + g +
| {-- pixel | lexemes --> i
v v v
o e e = +
| Pixel Window Services i
o e . e e e e - +
i <-- pixel lexemes
v
R i T T P, +
i Graphics Canonical |
i Terminal Services |
e T, +
Figure 11.3: Terminal Service Architecture with
Graphics Canonical Terminal
Notes:
o} Don't know much about graphics primitives; we're relying on

analogy with forms/basic, which we do understand, to support this
model of basic/graphics.

Proposals for further applications Page 35

Terminal Service Architecture March 5, 1982

- — -

Terminal Services

To/from application

Terminal Services Terminal Services

FORMS Logical i | Basic Logical i 1| Graphics Logical |
P b i

——

Bttt bl A i b bbb b D D + e mmecm - +
i {-- field | (== cell i == pixel

. lexemes } lexemes ' lexemes

v v v

---------------- B e el T ot T RS
Field Voo Cell oo Pixel |
Window Services | i Window Services ! i Window Services !
——————————————————— R e ikl e T el T T S

field-cell |
converter |

e e e e e e e e ==

v
———————————— + e ey
cell-pixel | i cell-pixel |
converter | i converter |
------------ + b ——————————
| {-- pixel | lexemes -->
| i
D i + i e +
v v v
e +

i Graphies Canonical !
i Terminal Services |

Figure 11.4: Terminal Service Archtecture with
Multiple Canonical Terminals

Note that another possibile place for the converters does exist --
"below" the window services. 1In this configuration, the canonical
terminal services plus converters are other forms of canonical
terminal services, e.g., a graphics CT with a cell-pixel is a basic
CT (note also that most real graphics terminals are page mode

terminals also). Similar analogies can be made for other types of
converters and CT's.

Proposals for further applications Page 87

Terminal Service Architecture March 5, 1982

The work that remains to be done is:

o] The Window Server needs to be fully understood for all types of
canonical terminal.

0 The Forms and Graphics Canonical Terminal need to be defined. [We
are looking the the UK Forms Management Terminal Service project to
define the Forms CT. Perhaps the CAD/CAM or UNICORN projects
should define the Graphies CT?]

o) The converters nead to be constructed.

Once this work is done, the next step is to start building hardware
that directly supports arbitrary level 3 service packages, converters,
window management, and canonical terminals. [WREN 2, UNICORN or the
CAD/CAM workstation, BEAVER, HAWK/FALCON, EAGLE, etc. are all
candidates that might directly support some or all of the Terminal
Service.]

Proposals for further applications Page 88

Terminal Service Architecture March 5, 1982 17

’

12 Glossary l
[to be supplied] 1
-

!

._—l

—d

A _A

S |

D IR |

Y |

Glossary ~Page 39

	Title Page
	Cover Page
	1
	Table of Contents
	2
	3
	4
	Preface
	5
	Terminal Services Overview
	6
	7
	Introduction to the Architecture
	8
	-- The Logical Terminal
	9
	10
	11
	12
	13
	14
	15
	16
	-- Human Interface Service
	17
	-- Terminal Service Overseer
	18
	19
	-- A short tour of the Terminal Service
	20
	21
	22
	23
	24
	Architectural Specification
	25
	Concepts
	26
	27
	28
	29
	30
	31
	The Canonical Terminal Server
	32
	-- Invoking the BCTS at level 1
	-- About scroll and page mode
	33
	34
	-- The Basic CT Services
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	-- BCTS Interfaces
	45
	46
	-- About the BCTS Server
	47
	48
	49
	50
	51
	52
	53
	54
	55
	The Window Service (Level 2)
	56
	57
	-- Services
	58
	59
	60
	-- Window Interfaces
	61
	-- Other work on Windows
	62
	The Logical Terminal Server (Level 3)
	63
	-- Invoking the right Level 3 service package
	-- The GPITS Services
	64
	65
	66
	67
	68
	69
	-- GPITS Interfaces
	-- About the GPITS server
	70
	71
	72
	73
	74
	75
	The Parameter Management Service
	76
	77
	78
	The Terminal Service Overseer
	79
	80
	The Human Interface Service
	81
	Proposal for further application of the architecture
	82
	83
	84
	85
	86
	87
	88
	Glossary
	89

