
"Prime RQ-&E Confidential"

r

r
i

r
r

r
r
L

r
r
r

PE-TI-988

TERMINAL SERVICE ARCHITECTURE

March 11, 1982

T e r m i n a l S e r v i c e A r c h i t e c t u r e P E - T I - 9 3 8

DATE: March 11, 1982

T O : R & D P e r s o n n e l

FROM: Dick Munroe, Evelyn Tate

SUBJECT: Terminal Service Architecture

REFERENCE: PE-TI-847, "Canonical Terminal Requirements"
KEYWORDS: Canonical terminal, Virtual terminal, Terminal Services,

PDA

ABSTRACT

This is the first draft of a Terminal Service Architecture for Prime.
This architecture is the framework for all future terminal support
projects to be undertaken by the Terminal Services Development section
of the Communications Software department.
This document contains:

o an overview of the architecture detailing its components and their
r e l a t i onsh ips ;

o preliminary specifications for services to be provided, within this
framework, to satisfy the requirements in PE-TI-847 for basic classterminal support;

o ideas for the application of this architecture to forms and
graphics class terminal support.

We expect that this document will eventually be folded into the Prime
Distributed Architecture documentation, as tha specification for Core
Virtual Terminal Services within PDA.

Prime RD&E Confidential"

Terminal Service Architecture March 5, 1932

Table of Contents

P r e f a c e 5

1 T e r m i n a l S e r v i c e O v e r v i e w 6
1 . 1 G o a l s o f T e r m i n a l S e r v i c e s D e v e l o p m e n t 6
1.2 Relationship to PRIME'S Distributed Architecture.. 6
1 . 3 R e l a t i o n s h i p t o n o n - P D A s y s t e m s 7

2 I n t r o d u c t i o n t o t h e A r c h i t e c t u r e 3
2 . 1 T h e L o g i c a l T e r m i n a l 9

2 . 1 . 1 C a n o n i c a l T e r m i n a l S e r v i c e s 9
2 . 1 . 2 W i n d o w S e r v i c e s 1 1
2 . 1 . 3 L o g i c a l T e r m i n a l S e r v i c e s 1 3
2 . 1 . 4 P a r a m e t e r M a n a g e m e n t S e r v i c e 1 5
2 . 1 . 5 S u m m a r y o f t h e L o g i c a l T e r m i n a l 1 6

2 . 2 H u m a n I n t e r f a c e S e r v i c e 1 7
2 . 3 T e r m i n a l S e r v i c e O v e r s e e r 1 8
2.4 A short tour of the Terminal Service 20

2 . 4 . 1 G e t t i n g s t a r t e d 2 0
2 . 4 . 2 A n e w l o g i c a l t e r m i n a l 2 1
2 . 4 . 3 D a t a o u t a n d i n 2 2

3 A r c h i t e c t u r a l S p e c i fi c a t i o n 2 5

4 C o n c e p t s 2 6
4 . 1 M o d e l i n g s t r a t e g y 2 6

4 . 1 . 1 S e r v e r s 2 6
4 . 1 . 2 W o r k e r s 2 6
4 . 1 . 3 L e v e l s 2 6

4 . 2 L e x e m e s 2 7
4 . 2 . 1 L e x e m e s y n t a x 2 7
4 . 2 . 2 S t a n d a r d l e x e m e s 2 3

4 . 3 A b o u t A S C I I a n d t e r m i n a l s 2 9
4 . 3 . 1 W h y A S C I I ' . 3 0
4 . 3 . 2 L i n e f e e d a n d n e w l i n e 3 0
4 . 3 . 3 S p a c e a n d b l a n k 3 0

5 T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) 3 2
5 . 1 I n v o k i n g t h e B C T S a t l e v e l 1 3 3
5 . 2 A b o u t s c r o l l a n d p a g e m o d e 3 3

5 . 2 . 1 R e a l w o r l d a n a l o g u e s o f e a c h fl a v o r 3 3
5 . 2 . 2 W h y t h e m o d e l s a r e c o n c e p t u a l l y d i f f e r e n t 3 4
5 . 2 . 3 W h y w e n e e d b o t h m o d e l s 3 5

Table of Contents Page

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

5 . 3 T h e B a s i c C T S e r v i c e s 3 5
5 . 3 . 1 A p p e a r a n c e o f a s t a n d a r d d i s p l a y 3 6
5.3.2 Appearance of a standard keyboard 36
5 . 3 . 3 A s t a n d a r d c o m m u n i c a t i o n s p r o t o c o l 3 9
5 . 3 . 4 C h a r a c t e r d i s p l a y s e r v i c e 3 9
5 . 3 . 5 A S C I I F o r m a t E f f e c t o r s e r v i c e s 3 9
5 . 3 . 6 A l a r m s e r v i c e * . ' . ' . ' . ' 4 0
5 . 3 . 7 P o s i t i o n s e r v i c e s 4 1
5 . 3 . 8 E r a s e s e r v i c e s . ' . * . ' . * . " . ' 4 2
5 . 3 . 9 H i g h l i g h t s e r v i c e s \ \ \ 4 3
5.3.10 Insert/delete services ' '. '. '. '. '. '. '. .' .'." 44
5 . 3 . 1 1 V i s i b l e c u r s o r 4 5
5 . 3 . 1 2 M i s c e l l a n e o u s s e r v i c e s 4 5

5 . 4 B C T S I n t e r f a c e s I . " . . " . " . " . ! ! ! " . ! ! I " . ! ! " . 4 5
5 . 4 . 1 D i s p l a y / K e y b o a r d i n t e r f a c e s (l e x e m e s) 4 5
5 . 4 . 2 M a n a g e m e n t i n t e r f a c e s (p a r a m e t e r s) " " ' 4 7

5 . 5 A b o u t t h e B C T S s e r v e r . . . i \ 7
5 . 5 . 1 S t r u c t u r e s u s e d i n B C T S ' . * . ' . ' . ! . . . ! !] 4 7
5 . 5 . 2 W o r k e r s [' . . . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' . ' .] 5 1
5 . 5 . 3 N o t e s t o t h e I m p l e m e n t o r ] 5 4

T h e W i n d o w S e r v i c e (L e v e l 2) 5 6
6 . 1 S e r v i c e s ! ! . ! ! ! ! 5 8

6 . 1 . 1 M a n y - t o - o n e m a p p i n g ! . " ! ! . " 5 8
6 . 1 . 2 W i n d o w s f o r l o g i c a l d i s p l a y s 5 ^
6 . 1 . 3 A c t i v e l o g i c a l k e y b o a r d 5 8
6.1.4 Operations on windows * 59
6 . 1 . 5 W i n d o w " s c r o l l i n g " 5 9
6.1.6 Window identification '. *. '. ". * ' " '. " " '. * ".'. '. \ 59
6 . 1 . 7 S e l e c t i n g a l o g i c a l k e y b o a r d 5 9
6 . 1 . 8 O v e r l a y i n g w i n d o w s . 6 0
6 . 1 . 9 S y n c h r o n o u s / a s y n c h r o n o u s u p d a t e 6 0
6 . 1 . 1 0 S c r o l l " p a d " f o r p a g e C D ' . ' . ' . ' . ' . . ' . ' / . ' / . ' . ' . ' . 6 0

6 . 2 W i n d o w i n t e r f a c e s . ' . " . ' . * . ' . " . ' . * . ' . " . ' . ' ! . ' . ' . ' 6 1
6 . 2 . 1 D i s p l a y / k e y b o a r d i n t e r f a c e s ' . I " . * . ' . \ ' . 6 ^
6 . 2 . 2 M a n a g i n g w i n d o w s 6 1

6 . 3 O t h e r w o r k o n W i n d o w s . 6 2

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) 6 3
7.1 Invoking the right Level 3 service package. .. I". !!"."." I 64
7 . 2 T h e G P I T S S e r v i c e s ' . . ' / . ' .] ' . ' . ' . 6 4

7 . 2 . 1 D i s c a r d O u t p u t * * " 6 4
7 . 2 . 2 S u s p e n d / R e s u m e O u t p u t , * 6 4
7 . 2 . 3 P a g i n a t i o n " . ' . ' . ' . " . I I ' . " . ' . " . . ' . 6 5
7 . 2 . 4 A t t e n t i o n s 6 5
7 . 2 . 5 D a t a F o r w a r d i n g ! 6 6
7 . 2 . 6 E c h o . ' . " . * . ' . " . " . ' . ' . . ' . ' . " . ' 6 6
7 . 2 . 7 L e x e m e M a p p i n g 6 7

T a b l e o f C o n t e n t s P a g e

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

7 . 2 . 3 L o c a l E d i t i n g 6 8
7 . 2 . 9 Q u o t i n g 5 9
7 . 2 . 1 0 V a r i a b l e T a b s 6 9
7.2.11 Variable Form Feed Handling 69
7 . 2 . 1 2 L i n e W r a p p i n g " 5 9
7 . 2 . 1 3 P h a n t o m C o l u m n L i n e W r a p p i n g 6 9

7 . 3 G P I T S I n t e r f a c e s . ' . . ' . ' . . ' . ' . ' . * 7 0
7 . 3 . 1 S e r v i c e I n t e r f a c e s (L e x e m e s) 7 0
7 . 3 . 2 M a n a g e m e n t I n t e r f a c e s (p a r a m e t e r s) 7 0

7 . 4 A b o u t t h e G P I T S s e r v e r 7 0
7 . 4 . 1 S t r u c t u r e s 7 1
7 . 4 . 2 W o r k e r s 7 1
7 . 4 . 3 N o t e s t o t h e I m p l e m e n t o r 7 5

8 T h e P a r a m e t e r M a n a g e m e n t S e r v i c e 7 6
8 . 1 T h e P a r a m e t e r M a n a g e m e n t S e r v e r s 7 6

8 . 1 . 1 L e x e m e s f o r P a r a m e t e r M a n a g e m e n t 7 7
8 . 1 . 2 P r o t o c o l f o r P a r a m e t e r M a n a g e m e n t 7 8
8 . 1 . 3 N o t e s t o t h e I m p l e m e n t o r 7 8

9 T h e T e r m i n a l S e r v i c e O v e r s e e r 7 9
9 . 1 S e r v i c e s 7 9

9 . 1 . 1 I n i t i a l i z a t i o n S e r v i c e s 7 9
9 . 1 . 2 S e c u r i t y S e r v i c e 7 9
9 . 1 . 3 S t r e a m M a n i p u l a t i o n S e r v i c e s 8 0
9 . 1 . 4 A t t e n t i o n D e l i v e r y S e r v i c e 8 0
9 . 1 . 5 P r o c e s s S t a t u s S e r v i c e 8 0

9 . 2 T h e T e r m i n a l S e r v i c e O v e r s e e r 8 0
9 . 3 N o t e s o n I m p l e m e n t a t i o n 8 0

1 0 T h e H u m a n I n t e r f a c e S e r v i c e 8 1

11 P r o p o s a l f o r f u r t h e r a p p l i c a t i o n o f t h e a r c h i t e c t u r e 8 2
1 2 G l o s s a r y 8 9

T a b l e o f C o n t e n t s p a s p

Terminal Service Architecture PE-TI-988

Preface

This document is the architectural specification for the
Terminal Service of PRIME'S Distributed Architecture
document is organized into three sections:

Core Vir tual
(PDA). The

Architectural Specification: Sections 1 to 3. Specify the goals
of the Terminal Service, an introduction to the structure of the
Terminal Service, and a formal architectural specification of each
component of the Terminal Service [not presented in Version 1 of
the document].

Application of the Architecture: Sections 4 to 10. While Terminal
Services Development is part of the larger PDA effort, we have to
balance architectural vision with product needs. At this time, we
have chosen to apply the Terminal Service Architecture to solving
the issues dealing with support of "character-at-a-time" terminals
and intend the first prototype terminal service to solve these
issues.

Proposal ror further applications of the architecture: Section 11.
Contains a proposal that defines how we intend to apply this
architecture toward supporting other types of terminals.

This draft of the specification is
about either Window Services incomplete. Sect ions which ta lk

Preface Paae

T e r m i n a l S e r v i c e A r c h i t e c t u r e P E - T I - 9 8 8

1 Terminal Service Overview

A Terminal Service provides an end-to-end, device and connection
independent terminal system.
One "end" of the terminal system is a program; the other "end" is a
terminal providing an interface to a human user. The "service"
provided is intended to ease the development of programs that usa the
sophisticated capabilities of terminals.

1.1 Goals of Terminal Services Development

Terminal Services Development (TSD) will provide a Terminal Service
that is wholly or partially responsible for the following:
o providing programs with the appearence of a "logical terminal"

having a standard set of display and keyboard functions and aset of display and keyboard related services, independent of
physical terminal-type.

o shielding programs and terminal users from needing to know
details about the configuration of the terminal to program
connection.

o establishing and breaking connections between a terminal and one
or more processes, or between a process and one or more
te rmina ls .

o managing the set of services provided by the Terminal Service on
behalf of either a program or a terminal operator under
guidelines defined by a system administrator.

1.2 Relationship to PRIME'S Distributed Architecture

The Terminal Service is the Core Virtual Terminal Services within
PRIME'S Distributed Architecture (PDA). The Terminal Service relies
on at least these services provided by PDA.

o J o b m a n a g e m e n t : t o a s s i s t i n t e r m i n a l - i n i t i a t e d
t e r m i n a l - t o - p r o c e s s b i n d i n g , a n d t o a s s i s t i n t h e
task-interrupting behavior required by QUIT.

o Naming service: to assist in terminal-to-process binding.
o Interprocess Communication (IPC): to provide communication

between components of the Terminal Service.
o Logical I/O (LIO): to define the form of the interface between

programs and the Terminal Service.

T e r m i n a l S e r v i c e O v e r v i e w P a ^ e

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

S y s t e m A d m i n i s t r a t i o n : t o a s s i s t i n d e fi n i n g t h e i n i t i a l
relationships between the terminal and the rest of PDA as well
as programs running within a PDA environment.

1.3 Relationship to non-PDA systems

The Terminal Service architecture is being defined as an integral
part of the larger PDA architecture. However, it is possible that
some or all of the Terminal Service must be provided in a non-PDA
system, for example today's PRIMOS. Should this occur, TSD will be
responsible for developing any and all PDA-equivalent services for
the non-PDA systems.

T e r m i n a l S e r v i c e O v e r v i e w P a c r e

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 3 2

2 Introduction to the Architecture

+ +
! P r o g r a m j
+ +

+■ •+
! Library Routines !

i - +
i
i

+ +
! AMLC DIM ! (or remote login,
+ + o r D P T X , o r . . .)

i

+ +
! Physical Terminal !
+ +

i
i

Terminal
User

Figure 2.1: Today's Terminal Service
Terminal handling in today's PRIMOS environment is awkward. Programs
are responsible for:
o Connection Independence. Programs are connected to terminals via a

number of different program interfaces. "Assignable" and "login"
terminals, for instance, must be treated very differently at the
program interface.

o Device Independence. Programs must know how to handle different
terminals (for example, the PT45, OWL, and WREN) all of which use
different escape sequences to express similar functions.

o Logical Services. Some general terminal-handling services (for
example echoing and erase/kill processing) are handled by PRIMOS
through various interfaces. Other useful services (for example,
selective echoing and "stop printing when screen is full") must be
provided by individual programs in an ad-hoc fashion.

As a consequence, user interfaces to terminal services vary from
program to program; terminal services vary from program to program;and capabilities of terminals go mostly unused.

The Terminal Service within PDA will provide a simpler and more
powerful program interface which will make it easier for programs to
get the most out of the terminal. In order to do this, the Terminal
Service provides programs and terminal users with the appearance of a
'logical terminal" that provides a consistent and unvarying interfaceto programs and terminal users.

I n t r o d u c t i o n t o t h e A r c h i t e c t u r e P a a o

Terminal Service Architecture March 5, 1982

What is a "logical terminal"? How does the Terminal
appear to exist? How do programs and terminal Service make it

users control itsThe remainder of this section is an informal discussion of
the architecture which provides these services in the PDA environment.
behavior?

2.1 The Logical Terminal

The logical terminal is whatever the program sees as being at the
end of i ts read and wr i te character s t reams. Al l terminal
functionality visible to the program can be ascribed to this
hypothetical logical terminal. In practice, of course, there is no
single entity which fil ls this role; the Terminal Service, the
physical terminal, and various PDA services all play a part in
presenting this end-image to the program.
The logical terminal has:

o a keyboard capable of generating a certain range
this range defines a set of keyboard services. o f inputs ;

a display which has a certain shape and
of display
serv ices.

size, and a certain set
behaviors; these behaviors define a set of display

o a set of parameters which the program can manipulate to control
the logical terminal's behavior.

The program's interfaces to read from, write to, and control the
logical terminal are consistent and unvarying.

Physical terminals don't always resemble the logical terminal very
closely. This is where the Terminal Service Architecture comes in.

2.1.1 Canonical Terminal Services

The first problem is that physical terminals present a
of display and keyboard capabilities. The interfaces
capabi l i t ies are far from standard; everyone is
different terminals require different escape sequences
the same functions.

wide range
to those

aware that
to get at

Therefore, the first step towards a logical terminal is to
provide an interface to physical terminal capabilities that doesnot depend on the physical terminal.

In our model, the interface consists of a set of standard lexemes
which represent standard keyboard and display functions-: £
lexeme is the smallest self-contained unit of terminal language.
Lexemes en route from program to terminal are generally
interpreted as display requests; lexemes en route from terminal
to program are generally encodings of single keystrokes. The
lexeme <A> is therefore interpreted as "display an A" on output

Introduction to the Architecture Page

Terminal Service Architecture March 5, 1982

Program

Canonical Terminal Service

Physical Terminal

Terminal
User

Figure 2.2: The Canonical Terminal Service
or as "the A key was pressed" on input. Similarly, the lexeme
<position home> is a unit which is interpreted as a cursor
position request or as an indication that a particular cursor key
was used. The actual implementation of lexemes may be as
messages, character sequences, or some other structure.
The Canonical Terminal Service's job is to translate between
these standard lexemes and the language used by the physical
terminal. When the program looks at the physical terminal
through the Canonical Terminal Service, it sees what we call the
"canonica l te rmina l " — a termina l w i th s imple , s tandard
behaviors which generates and responds to the standard lexemes.
The Terminal Service will
te rmina ls : provide three classes of canonical

Basic Canonical Terminal. The familiar "character-at-a-time"
terminal. The display services of the Basic CT manipulate
(wri te, highl ight, erase) characters on a one or two
dimensional display. Later in this document we'll be looking
at tha Basic CT in detail.

Forms Canonical Terminal. This terminal deals with "fields"
(groups of character positions) bound together into a "form".The display services of the Forms CT manipulate fields. The
Forms CT is nominally capable of a fair amount of local
processing.

Graph ics Canon ica l Termina l . A p ixe l based graph ics
terminal. We don't have much to say about this topic yet,
but we know that the Terminal Service must support such a
device.

Introduction to the Architecture 1 n

Terminal Service Architecture March 5, 1982

But there are a lot more services to be provided by the Terminal
-service. Why are these services not provided by the Canonical
Terminal Services?

2.1.2 Window Services

The answer to the previous questions lies in our desire to
provide a class of services related to windows. Windows are
display regions through which a terminal user can communicatewith one or more programs at once.

Program

Window Service

Physical Terminal

Terminal
User

Figure 2.3: The Window Service

In today's environment, there is only
associated with each physical terminal;
to only one process from his terminal.

one " log ica l te rmina l "
a terminal user can talk

We would like to do away with this restriction and make it
possible to support multiple processes from a single terminal.
One terminal user may want to work on several things
simultaneously, for example simultaneously running an editor, a
compiler, a debugger, while a status program checks for incoming
mail messages.

Introduction to the Architecture Page 11

Terminal Service Architecture March 5, 1982

We believe that the best human interface in this environment is
one which allocates a separate piece of the display, or "window",
to each conversation, so that they don't interfere with each
other. The user can watch several things happening at once,
direct his input to the process he wants to talk to, make
interesting windows bigger, and do lots of other neat things.
Most programs are and will continue to be developed with the
assumption that the program "owns" the entire terminal; the
compiler won't be aware of the existence of the mail program, or
any other programs which happen to be sharing the terminal at the
moment. So, the Window Service provides programs with the
appearance of a private canonical terminal, one (or more) per
program.
This "private canonical terminal" still looks like a canonical
terminal to the program; the program can send lexemes to the
display, and read lexemes from the keyboard. When the program
says "erase the whole display", that indeed happens, as far asthe program is concerned. However, the Window Service intervenes
to ensure that only the appropriate window gets erased, and not
in fact the whole canonical display. The Canonical Terminal
Service continues to do its job, unaware that window manipulation
is happening above it.

With the Window Service in place, there is no need to require the
dimensions of the private canonical display to exactly match the
canonical display dimensions. We can let the program "see" a
very large or a very small display. The Window Service can take
care of mapping that very large display onto the canonical
display, through a window.
From the terminal user side, the Window Service provides the
mechanism that partitions the canonical terminal into windows
through which the terminal user sees these "private canonical
terminals" .

In the requirements definition for the Terminal Service,
issue of windows was not addressed. Consequently, we're
ready to specify the exact nature of windows in any detail,
are using this as a placeholder until we understand, or
someone else to specify, the requirements for windows
operations upon windows.

the
not
We

get
and

Okay, so much for windows, but back to the original question.
What happened to all the rest of the services that were supposed
to be provided by the Terminal Service? Why aren't those
services provided by the canonical terminal?

Introduction to the Architecture Pacrp 1 2

Terminal Service Architecture March 5, 1982

2'^-3 Logical Terminal Services

Program

Logical Terminal Service

Physical Terminal

Terminal
User

Figure 2.4: The Logical Terminal Service
Once windows are part of the Terminal Service architecture we
have a problem deciding where the logical terminal
(erase/kill, line wrapping, etc.) should be provided.

serv ices

As an example, look at a terminal user who is running FUTIL in
one window and EMACS in another. These program want different
behaviors, different "personalities" for their logical terminals;for instance, FUTIL wants its logical terminal to handle all
echoing, and EMACS wants to disable that feature sinceits own version of echoing. it's doing

If the Canonical Terminal Service is responsible for echoing,
does it echo a particular keystroke or not? Clearly it depends
on which logical terminal the current window belongs to; but
we've said that the Canonical Terminal Service doesn't know about
windows. Suppose the Window Service cleverly changes the
Canonical Terminal Service's echoing parameter whenever tha user
moves the cursor to a different window? That's a little better,

Introduction to the Architecture Page 13

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

but suppose the Canonical Terminal Service is called upon to echo
a^"clear the entire display" request. It st i l l can't do theright thing without an intimate knowledge of the window setup.
A much simpler solution is to put the "personality" portion of
the logical terminal above the Window Service. The Logical
Te r m i n a l S e r v i c e i s r e s p o n s i b l e f o r p r o v i d i n g t h o s e
behav io r -mod i f y i ng se rv i ces . L i ke the Canon ica l Te rm ina l
Service, the Logical Terminal Service is unaware of the existence
of windows. It does its job thinking that it owns a private
canonical terminal; the Window Service makes sure that the
window boundaries are observed.
Each logical terminal has its own set of logical terminal
services, provided by its own copy of a Logical Terminal Server.
Examples of logical terminal services are:
o Echoing — associating a visual display operation with each

keystroke.
o Erase/Kill — allowing the terminal user to modify his typed

input before the program gets it.
o Translation -- allowing the program to converse in EBCDIC,

even though the canonical terminal is defined to understand
ASCII.

In short, a logical terminal service is anything that alters the
program's perception of the behavior of the canonical terminal.
A program which was happy with the definition of the canonical
terminal, and which wanted to send and receive canonical terminallexemes with nothing added, wouldn't need a Logical Terminal
Service at all.

There will probably be completely different "packages" of logical
terminal services, aimed at providing different logical terminal
personalities. Later in this document we'll be looking closely
at one such package, which is intended to support (with
considerable extensions) PRIMOS's "standard" login terminal
pe rsona l i t y.
Since each program has its own logical terminal, and we've said
that d i f fe rent log ica l te rmina ls , us ing the same phys ica l
terminal, can have different behaviors (echo and no echo, for
instance), we have to provide a way for programs to control the
logical terminal's behavior.

I n t r o d u c t i o n t o t h e A r c h i t e c t u r e p a g e 14

Terminal Service Architecture March 5, 1982

2.1.4 Parameter Management Service

The Parameter Management Service allows a programs to find out or
change the state of its logical terminal. The program handsread parameter" and "write parameter" requests to the Parameter
Management Service, which performs the appropriate service.

Program

Service to manage
parameters
that control ...

Logical Terminal
Services

Window Services

Canonical Terminal
Services

Terminal
User

Figure 2.5: The Program managing the Logical Terminal

The program doesn't know about the components inside the Terminal
Service; it's interested only in the net effect — the logical
terminal. Within the Terminal Service, however, a particular
parameter may be relevant to any one, or more than one, of the
three servers. The size of the logical display, for instance, is
known to both the Logical Terminal Service and the Window
Service; anything having to do with the physical display (for
instance, whether it's capable of reverse video) is known only to
the Canonical Terminal Service.

Introduction to the Architecture Page 15

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

The Parameter Management Service is responsible for providing a
sing1- program interface for managing the logical terminal. The
program never sees the complexity within the Terminal Service.

2.1.5 Summary of the Logical Terminal

Programs and terminal users see the Terminal Service from
different perspect ives.

From outside the Terminal Service a program sees a "logical
terminal". As far as a program is concerned, the "logical
terminal" has a certain size, shape, and a characteristic set of
behaviors that programs find useful.
On the other hand, the terminal user sees "logical terminals"
through windows displayed on his physical terminal. "Windows"
(or viewports) allow the terminal user to partition the display
portion of the canonical terminal in a way that allows the
terminal user to talk to many programs at the same time.
"Windows" aside, the "logical terminal" seen by the terminal user
is the same object that the program sees, with the same nice
features: a certain size, shape, and characteristic behaviors.
These four components of the Terminal Service contribute to the
appearance of a "logical terminal".
o Logical Terminal Service: provides the characteristic set of

behaviors that programs and terminal users expect. This is
the "personality" portion of the logical terminal. We talk
about one set of behaviors in detail later.

o Window Service: provides the size and shape of the logical
terminal, and manages the windows through which the terminaluser views one or more logical terminals.

o Canonical Terminal Service: provides a standard "vocabulary"
(lexemes) for manipulating terminals. This is the "physical
interface" portion of the logical terminal. The rest of the
Terminal Service, and as a consequence all programs outside
the Terminal Service, need never know the details of managing
particular types of terminals.

o Parameter Management Service: provides the management
interface that allows programs to control parameters to
modify the behavior of the logical terminal.

So far we've explained how the program controls the logical
terminal. But what about the terminal user? We know he'll want
to modify the logical terminal 's behavior too, to change
erase/kill characters, perhaps to control window sizes, and so
forth. He can talk to programs through the Terminal Service, but
how does he talk to the Terminal Service?

I n t r o d u c t i o n t o t h e A r c h i t e c t u r e P a g o 16

Terminal Service Architecture March 5, 1932

2.2 Human Interface Service

The Human Interface Service is a special program which the terminal
user uses to manipulate the parameters of any of his logical
te rm ina ls .

Program |
+

i Human Interface Service
+ ■

Terminal
User

Figure 2.6: The Terminal User managing the Logical Terminal

The Window Service provides a way for a terminal user to converse
with many programs through a single canonical terminal. Taking
advantage of this facility, we have modeled the Human Interface
piece of the terminal service as "just another program" using the
services provided by the Terminal Service to carry on a conversation
with the terminal user.

Introduction to the Architecture Page 17

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

The Human Interface Service talks to the terminal user through a
logical terminal, just as any other program would. This logical
terminal will be windowed onto the canonical terminal, just like any
other logical terminal. The Human Interface Service uses the
capab i l i t i es o f the log ica l te rm ina l (fo r examp le , echo ing ,
erase/kill, clear display) to provide an appropriate user interface.The conversation between the terminal user and the Human Interface
Service consists of whatever is considered "normal" or "comfortable"
for the user: menus, forms, TERM commands, or any other user
interface that is considered appropriate. The Human Interface
Service invokes the Parameter Management Service to change
parameters for any of the user's logical terminals, including the
one in use by the Human Interface Service.

But there's still a piece missing. The Parameter Management Service
controls a logical terminal on the behalf of the program which uses
it. We've just said that the Human Interface Service can control
some other program's logical terminal. But we previously said that
programs sharing the same canonical terminal don't know about each
other and can't see each other's logical terminals. How does the
Human Interface Service do it?

2.3 Terminal Service Overseer
To answer that question, we introduce the last component of the
Terminal Service. The Terminal Service Overseer provides all
services that involve the relationships between streams owned by a
single terminal user. There are streams within the Terminal
Service, (maybe) streams to Job Manager(s), and the normal streams
(e.g. standard in and standard ou) to processes which are clients
of the Terminal Service. The Terminal Service Overseer is a "master
manager" that manages the connections among components of the
Terminal Service and provides the terminal user's "window" into the
rest of PDA.

This is the least understood piece of the Terminal Service, because
it has an intricate relationship to the PDA environment, which isn't
completely defined yet. We can mention some of the services we knowthe Terminal Service Overseer will provide.

o Te r m i n a l S e r v i c e I n i t i a l i z a t i o n : F i n d i n g a l l t h e c o r r e c t
servers and hooking them together so that the Terminal Service
can operate.

o Te rm ina l Sess ion I n i t i a l i za t i on : Ge t t i ng a t e rm ina l use r
connected to the right Job Management Service so that he can
access the complete PDA environment.

o Terminal Process Stream Management: Getting everything required
for a new "logical terminal" set up when a process opens a new
stream to the Terminal Service (including the right Logical
Terminal Service).

I n t r o d u c t i o n t o t h e A r c h i t e c t u r e P a a e 18

Terminal Service Architecture March 5, 1982

The Terminal Service

+ -+
i i
i i

+ - +

. - + + +
i Terminal |
■! Service [■
! Overseer j
+ +

+ -+

Prime's Distributed
Environment

+- Name Space Services

System Administration
Services

Job Management Services
- + Logical I/O Services

Inter-Process
Communication
Services

Security Services
etc .

Figure 2.7: Managing the Terminal Servi ce
Stream Interrelationships: Providing special cl ients l ike the
Human Interface Service with the ability to control other
logical terminals.

Security: Keeping unauthorized programs from accessing oth^r
logical terminals.
And probably others we haven't thought of yet.

Introduction to the Architecture Page 19

Terminal Service Architecture March 5, 1982

2.4 A short tour of the Terminal Service

"Nothing is what it appears to be!chaos is loose on the world..." A l l i s i l l us ion and

from Waldo & Magic, Inc. by R. Heinlein.
If you have made it this far, there is lots more stuff that follows.
Here are a few brief scenarios describing how we think all this will
work within PDA. Unfortunately, even a brief scenario is a couple
of pages long. If you don't intend to read any further, these
scenarios will leave you with a good idea of the "flavor" of the
Terminal Service. If you do intend to read further, these examples
should make the rest of the document easier to understand.

2.4.1 Getting started

We^assume that, at the very beginning, the PDA SystemIn i t ia l i za t ion Serv ice has s ta r ted up a Termina l Serv ice
Overseer, and that that, in turn, has started up the appropriate
Canon ica l Termina l Server (bas ic , fo rms, e tc .) fo r each
terminal, as specified in some system profile. This is
min imal s ta te fo r an inac t ive te rmina l . (Not ice tha t
terminal I/O is made canonical from the very beginning
Canon ica l Te rm ina l Se rv i ce i s a lways the re to
terminal-type-specific data out of the system.)

the
a l l
the

keep

This scenario shows what happens to get the whole Terminal
Service assembled when a terminal becomes active.

The terminal user sits down
on the physical keyboard.

at terminal XYZ and presses a key

The Canonical Terminal Service receives the terminal's input
for that keystroke, converts the input to canonical form (a
lexeme), and emits the lexeme upward ...
Where the Terminal Service Overseer gets the lexeme. The
Overseer realizes that terminal XYZ is trying to enter the
system. The Overseer first connects the Canonical Terminal
Service to a Window Service.

Next, the Overseer starts up the appropriate (according tosome profile) Human Interface Service and tells it to connect
itself to terminal XYZ. The Human Interface Service selects
a set of logical terminal services and invokes Logical I/O to
connect a named stream to XYZ. The Overseer fields the
CONNECT request at the terminal end, creates a logical
terminal, and plugs in the specified Logical Terminal Server.

Introduction to the Architecture Page 20

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

o Tne Overseer goes through the same steps to get a PDA Job
Management Server hooked up to the same terminal, with its
own (possibly different) Logical Terminal Server.

o The terminal user has entered the system.

All this has happened in response to that first keystroke. The
terminal user has at his command a Job Manager, waiting for him
to log in, and a Human Interface Server, waiting for him to set
or examine terminal service parameters (including the erase/kill
characters to be used during the log in dialog).

2.4.2 A new logical terminal

Let's look in a little more detail at a step we glossed over in
the previous scenario — creating a new logical terminal. This
will be a frequent operation for the Terminal Service; it mi^ht
happen whenever the Job Manager starts up a new process, to runfrom the same terminal; when the system mail service, having a
message for a user, opens a stream to the terminal that user's
logged in at; or when EMACS requests a new window to disolay
a n o t h e r fi l e b u f f e r . v y

A process connects a named stream (or a pair
unidirectional named streams?) to the object XYZ. o f

o The PDA Logical I/O service interprets that request and
invokes the PDA Session Establishment Service, which finds
XYZ in the global name space and informs the Terminal Service
Overseer for XYZ about a new incoming stream.

o The Overseer allocates a new logical terminal data base for
XYZ, plugs the default Logical Terminal Service into the new
stream between itself and the process, starts up a Parameter
Management Service to go with it, and passes its end of the
stream to the Window Service. The Overseer also sets up a
default window allocation for this logical terminal. (We
have no idea how the default window should look.)

o The Window Service repaints the Canonical Display to make
room for the new window, which is initially empty.

o The new logical terminal is ready for use.
The process may want to manipulate i ts logical terminal
parameters (change the echo behavior, or some such) before it
starts sending data to the display.

I n t r o d u c t i o n t o t h e A r c h i t e c t u r e P a g e 2 1

Terminal Service Architecture March 5, 1932

2.4.3 Data out and in
The final example will follow some lexemes through the Terminal
Service. This won't by any means be a complete description of

to
For this example,

and the "general

the work done at each level; it's just intended
flavor of what might happen where, and why.
we'll assume the Basic Canonical Terminal
purpose" Logical Terminal Service have been selected.

First, look at what happens to the graphic character "A"
program and terminal.

g i v e the

between

Within LIO: The LIO mechanism takes a semantic request for
"A" from the program, and maps that into the lexeme <A> to be
passed to the terminal service. The format of the program's
semantic request hasn't been determined at this writing;
most likely it will be just the ASCII character "A" in a
buffer referred to by a LIO WRITE statement.

The lexeme first encounters the Logical Terminal Server (LTS)
at "level 3" of the Terminal Service. The server applies
some set of tests and transformations to output lexemes. In
this example, it might test to see whether "discard output"
has been requested (in which case the <A> would be thrown
away), or whether any lexeme transformation is required (suchas happens for control character expansion). If the <A>
passes all tests, it will be passed onward.
At level 2 (the Window Server (WS)): This server checks to
see whether this process's output is currently windowed onto
the canonical display (via the Basic Canonical Terminal
Server) and whether this display request can be satisfied
within this window. If the active position is in a different
window, the <A> may need to be preceded by a <position>
lexeme to get it to appear in the right region of the
canonical display.

At level 1, the Basic Canonical Terminal Server (
server, on receipt of the <A>, does whatever is(a) get the character A to appear at the cur
position of the display, and (b) advance the act
in accordance with standard rules (including
happen at the boundaries). For most terminals
ASCII "A" out on an asynchronous line will do
however, there may be extra translation (ASCII tlower to upper case) or special protocol handli
SDLC terminal) at this level, to handle idios
par t icu lar terminals .

CTS):
necessar
rent ac
ive posi
what is
, sendin
the t r

o EBCDIC
ng (for
yncrasie

This
y to
t i v e
t i o n

to
g an
i c k ;
, or

an
s of

Now, watch the
program.

same "A" as it progresses from terminal to

Introduction to the Architecture Page 22

Terminal Service Architecture March 5, 1982

At level 1 (CTS): The terminal-dependent keystroke for "A"
is mapped into the the lexeme <A>. Usually there's nothing
to this, but remember there could be translation or special
protocols involved here.
At level 2 (WS): This server determines which of (possibly)
several process input streams should get this lexeme.
At level 3 (LTS): This server, on receipt of the <A> lexeme,
applies some set of input tests and transformations,
sample service includes echoing (should this lexeme
echoed? i f so, as what?). An echo wi l l cause
appropriate lexeme(s) to be shipped to the display (via
level 2 server, as usual). If the program has invoked
character-at-a-time" data forwarding service, the <A> will

be sent off to the program; if not, the Logical Terminal
server may hold onto it until some other condition (such as
end of line) is met.

One
be

the
the
the

Within LIO: The LIO mechanism will convert the <A> lexeme
into some semantic representation understood by the program.
(Probably just an ASCII "A" character in a READ buffer.)

For a slightly more interesting case, let's
up" request from program to terminal. follow a "move cursor

Within LIO: The Logical I/O mechanism takes the semantic
request (that the cursor be moved up one position) from th«
program, and maps that into the lexeme <position up> to be
passed to the terminal service. We don't know yet the format
of the terminal's request; it could be a sequence of ASCII

spec ia l charac te r in a Pr ime-defined
an LIO POSITION function which looks

function, or a device-specific "terminal

characters, or a
character set, or
similar to a WRITE
posi t ion" cal l .
At level 3 (LTS): This server performs the same set of
checks on the <position up> lexeme as it did for the <A>.
At level 2 (WS): This server performs the same set of checks
as it did for the <A>. If the <position up> would move the
cursor outside of the allowed window, the server would
probably replace the <position up> lexeme with some differentflavor of <position>.

At levelj (CTS): When this server gets a <position up>
lexeme, it does whatever is necessary to cause the cursor tomove up one position on the physical display (subject to the
standard boundary violation rules). For some terminals, the
server can just invoke the terminal's "position up" operation
— (e.g. for a PT45 the server would send the right
two-character escape sequence). For some terminals, the
server may have to invoke an explicit "position to <x,y>"
operation, providing a row and column number.

Introduction to the Architecture Page 23

Terminal Service Architecture March 5, 1982

Now, watch the sameterminal to program. "move cursor up" as it progresses from

At level 1 (CTS): When the terminal user hits the "position
up" key (usually labeled with an arrow) on, say, his PT45,

terminal generates an escape sequence which is identified
Canonical Terminal server. The server collects

and maps them into the single lexeme

the
by the Basict he cha rac te r s
<position up>.
At level 2 (WS):
input stream.

Routes the lexeme to the right process

At level 3 (LTS): This server applies the same tests and
transformations to the <position up> lexeme as it did for the
<A>. This includes echoing (should a <position up> be
echoed?), data forwarding (should a <position up> cause
forwarding?) and so forth. This server could even be told
to discard positioning lexemes completely, if the program
preferred not to handle them.

Within LIO: The LIO mechanism will convert the <position up>
lexeme into some semantic representation understood by the
program. We don't know what the format would be yet, but it
might be a character sequence, a special character, an
on-unit invocation, or whatever.

Seems awfully easy, doesn't it.
demo of the prototype.

Come back in December, 1982 for a

Introduction to the Architecture Page 24

Terminal Service Architecture March 5, 1932

3 Architectural Specification

be the formal defini t ion of the[This section will
responsibilities of each component of the Teminal Service \We won't fill^ this section in for Draft 1. Most, if no-

a r c h i t e c t u r a l
A rch i tec tu re .

. . t a l l , o f t h ecomprising the content of this section is present in thebe low. Ex t rac t ing tha t ma te r ia l , ed i t i ng the resu l t i ng
changes incorporating the draft 1 review comments, and expanding the
application sections appropriately will be the primary content of draft

mater ia l
sect ions

Archi tectura l Specificat ion Page 25

Terminal Service Architecture March 5, 1932

4 Concepts

This section defines and discuss concepts and terms used throughout the
document. [It isn't complete yet.]

4.1 Modeling strategy

This document is not an internal design document for the Terminal
Service. This document does defines the framework that partitions
the design and implementation. Specific physical implementation
requ i remen ts w i l l i nfluence how the f ramework i s ac tua l l y
implemented .

4.1.1 Servers
For
Serv
serv
over
serv
para
i n d i
Seco
d i s t
The
d i s t

the
ice
es t
a l l
ices
mete
vidu
nd,r ibu

sepr ibu

purpo
i n t o
wo pu
Term

r-con
a l l y
it pr
t i n g
arate
t i o n .

se of this model, we ha
a number of individ

r p o s e s . F i r s t , i t a
inal Service into sm
(a t e r m i n a l - i n d e p e
t ro l l i ng se rv i ce , and
discussed and understoo
ovides us with a reason
the overal l Terminal
l y - d e fi n e d s e r v e r s

ve partitioned the Terminal
ual servers. This st rategy
Hows us to part i t ion the
aller and simpler sets of
n d e n c e s e r v i c e , a

so forth), which can be
d more easily than the whole,
able set of guidelines for
Service in a PDA environment,
a r e g o o d c a n d i d a t e s f o r

4.1.2 Workers

Workers are asynchronous algorithms within a server. Each worker
is big enough to be interesting and small enough to be described
clearly. Workers are simply a convenience for partitioning and
describing the problems that must be addressed within a server.
Workers are not intended to be a detailed design specification of
how t(3 solve the problems. We think of workers as mini-servers
that cooperate within the context of a bigger server. Other ways
do exist to approach the modelling problems for which we use the
workers.

4.1.3 Levels
We use the term "level" occasionally throughout this document to
refer to the components of the Terminal Service which act on and
transfer data -- "terminal traffic" — between program and the
physical terminal. These levels are numbered in order of their
proximity to the physical terminal; the Canonical Terminal
Service resides at level 1, the Window Service at level 2, and
the Logical Termial Service at level 3.

Concepts Page 25

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

4.2 Lexemes

Lexemes are the smallest self-contained units of terminal language.
Programs will communicate with the Terminal Service through a
protocol which consists of an exchange of lexemes. The existence of
lexemes may, however, be hidden from the application programmer by
appropriate higher level interfaces. Servers within the Terminal
Service also use lexemes to communicate among themselves.
Lexemes are language units, not "commands". All components of the
Terminal Service must be prepared to receive and parse all lexemes,
but their meaning and interpretation may vary throughout the
Terminal Service.

4.2.1 Lexeme syntax

General syntax for lexemes is

<lexeme-name [{parameter [, ...]}]>.

Examples of well-formed lexemes are:

<oregano>
<fruit {banana}>

<make salad {lettuce, carrot, tomato}>
Th is syn tax i s used to d i f f e ren t i a te l exemes f rom the
characters" that they represent, i.e. the character "A" and the

lexeme <A> are different objects.

We have not chosen a format for internal representation of
lexemes, but it must have these characteristics.
o Regular. Any server should be able to recognize and parse

all lexemes, even unknown ones.

o Capable of inclusion of arguments whose data type is
dependent on the lexeme name. Column numbers and visual
attributes are examples of arguments we want to support
within lexemes.

o Extensible. We would like to support an arbitrarily large
lexeme vocabulary.

We know of several existing implementations of lexeme-like
objects in other systems; these include:
o European Virtual Terminal Protocol "messages": lexeme =

length + code + code-specific arguments.

C o n c e p t s P a g e 2 7

Terminal Service Architecture March 5, 1932

o ANSI/ISO terminal control sequences: lexeme =
code + code-specific arguments + terminator. introducer +

4.2.2 Standard lexemes

We expect a wide variety of lexemes to be defined for different
versions of the Terminal Service. For instance, the vocabulary
for a forms class
definit ion concepts
terminals. However, there
of general usefulness and
These include lexemes for
miscellaneous ones.

termina l w i l l inc lude lexemes for fie ld
which are not relevant to basic class

is a set of standard lexemes which is
which should be always supported.
all ASCII characters, and a few

4.2.2.1 Graphic Lexemes

There is a lexeme for each ASCII graphic character, 95 in all.
They include letters (e.g. <A>, <a>), numbers (e.g. <1>),
punctuation and other special characters (e.g. <!>, <">) and
blank (<blank>).

The notation <graphic> will be used to represent
lexeme. any graphic

4.2.2.2 Format Effector Lexemes

There is a lexeme corresponding to each of the six ASCII
format effectors. We have added two, <new line> and <space>,
w h i c h a r e i m p l i c i t l y d e fi n e d i n A S C I I a s a l t e r n a t e
interpretations of other characters. (See the section "AboutASCII and Terminals" for more explanation.) The eight format
effector lexemes are:
0 <BS> or <back space>
0 <HT> or <horizontal tab>
0 <LF> or <line feed>
0 <VT> or <vertical tab>
0 <FF> or <form feed>
0 <CR> or <carriage return>
0 <NL> or <new line>
0 <SP> or <space>
The notation <format effector> will be used to
format effector lexeme. represent any

Concepts Page 28

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

4.2.2.3 The Bell Lexeme

TiJ^T^bell> lexeme corresponds to the ASCII control character' B E L " .

4.2.2.4 Control Lexemes

These are lexemes which correspond to all the rest of the
characters in ASCII which have no specific application to
t e r m i n a l f u n c t i o n s . T h e y a r e g e n e r a l l y u s e d f o r
communicat ions contro l , dev ice contro l , and in format ion
separation. There are 26 control characters; they are the
first 32 characters of ASCII, octal :0 through :37 (minus the
format e ffec tors and BEL, which are termina l re la ted
functions) and the DEL character (octal-:177). We will refer
to them using either their ASCII names (e.g. <NUL>, <ETX>,
<DC1>) or the more familiar control-letter terminology (e.g.'
<control-§>, <control-C>, <control-Q>.
The notation <control> will be used to represent any control
lexeme.

4.2.2.5 Special Purpose Lexemes

o <repeat {number}>

This lexeme will cause the previously-received lexeme to be
repeated {number} more times.
o t ranspa ren t {by te -s t r i ng }>

The byte-string is passed through without any modification by
the interpreter of this lexeme. Bytes are 8-bit quantities.

o < n i l >

A lexeme with no effects. The <nil> lexeme can be discarded
at any time with no unexpected side effects.

4.3 About ASCII and terminals
This section provides a little background relevant to our use of
ASCII, the "American National Standard Code for Information
Interchange", ANSI standard X3.4-1977.

C o n c e p t s p a g e 2 9

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

4.3.1 Why ASCII
Since ASCII is the commonly accepted character standard, we have
adopted it (with modifications described below) as the standard
lexeme vocabulary for terminals. We are not ruling out support
for other character sets; in fact we fully expect to support
many character sets in addition to ASCII. However, we cannot ypt
justify replacing ASCII as the "standard" character set with any
of^the "extended ASCIIs" currently proposed or in use outside
?rimn^ This may chanSe if, for example, Prime makes a commitmentto Office Automation large enough to justify adopting the
proposed ISO document-processing character standard ("Teletex")as our official internal character set, replacing ASCII.

4.3.2 Line feed and new line
The ASCII standard contains the following statement about the
"line feed" format effector.

"Where appropriate, this character may have the meaning
'New Line' (NL), a format effector that advances the
active position to the first character position on the
next line. Use of the NL convention requires agreement
between sender and recipient of data."

Prime has adopted the NL convention for internal use. We do this
by always interpreting the LF character with NL semantics. This
makes the plain LF function unavailable.

We want to make both functions available to programs and terminal
users. Rather than creating one lexeme which has two different
interpretations depending on context, we have created two
separate and unambiguous lexemes, <LF> and <NL>. Most TerminalService users will use <NL>, but <LF> will be available as well.

The ASCII standard also al lows the other vert ical format
effectors, vertical tab and form feed, to be interpreted as
moving the active position to the first column of the new line.Since neither character is used much at Prime now, we've made the
arbitrary decision which seems most useful, which is to alwaysinclude the "first column" semantics when the <VT> and <FF>
lexemes are interpreted.

4.3.3 Space and blank
The ASCII standard contains the following statement about the
"space" graphic character.

"SP (Space) . A graphic character that is usual ly
represented by a blank site in a series of graphics. The
space character, though not a control character, has a
function equivalent to that of a format effector that

Concepts Page 30

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 3 2

causes the active position to move one position forward
wi thout p roduc ing the pr in t ing or d isp lay o f any
g r a p h i c . " J

These two meanings — produce a blank character position, and
move the active position forward one position — are equivalent
in the usual case of printing text on a previously-blank disolay.
But when the positions affected are not already empty/ the
m e a n i n g s a r e d i f f e r e n t : t h e fi r s t r e p l a c e s a n y e x i s t i n gcharacter with a blank, while the second is a non-destructive
positioning operation. An example of this confusion can be seenin the way RUNOFF underlines text on a terminal; it uses spaces
to move the cursor to the text to be underlined, but a CRT
interprets the request as blanks, erasing all preceding text in
the process.

To avoid this ambiguity, we have created two separate lexemes:
<blank> is a graphic character, and <space> is a format effector
(the reverse of <back space>). Most Terminal Service users will
use <blank>, but <space> will be available as well.

C o n c e p t s P a g e 3 1

Terminal Service Architecture March 5, 1982

5 The Canonical Terminal Server (Level 1)

Level 1 is the "bottom" level of the Terminal Service. This level is
the closest to the physical terminal. The server at this level is
called a Canonical Terminal Server, or CTS; it handles the mapping of
standard display and keyboarjd operators onto physical terminal's
displays and keyboards.
A client of
standard lex
lexemes are
called the
services by
The standard
keyboard, ca
canonical di
(CT). The C
to provide
The Canonica
on physical
keyboard).

the CTS
ernes to
defined i
canonical
generat in

lexemes
l ied the
splay and
anonical
i t s c l i e
1 Termina

termina l

invokes
the CTS

n terms o
d isp lay

g standar
will appe

canonic
canonica

Terminal
nts with
1 Server
s (devic

standard display services b
The display effects of th

f their effects on an abstract
(CD). The CTS provides standar
d lexemes which represent keybo
ar to have been produced by an
al keyboard (CK). The comb
1 keyboard is called a canonica

y sendinge standard
d isp lay,d keyboard

ard input.
abstract

ination of
1 terminal

Server handles any operations
the appearance of a canonical

also emulates the the canonical
es consisting of a paired d

necessary
termina l .
terminal

isplay and

The CD and the CK will be defined to behave in ways that are
representative of most, but not all, existing displays and keyboards.Some work must usually be done, by any implementation of a Canonical
Terminal Server, to emulate the CD and CK using existing equipment.
The amount of space allocated for data structures, and work done to
translate lexemes into physical terminal language, will be directly
affected by how closely the physical display and keyboard match the CD
and CK. If

the display understood lexemes and
effects defined for the CD, and provided al l of the display

the keyboard generated the standard lexemes in
keystrokes, and response to

o the terminal had management interfaces
parameters defined in this section

to set and read the

tnenthe physical terminal would be an implementation of a Canonical
Terminal Server, and we would not have to write separate software to
support the CT. If PRIME were to build a "FINCH" terminal that met theabove requirements, we could achieve a substantial savings in work and
space, with a corresponding increase in overall system performance.
Because of the wide variation in capabilities of physical terminals, we
have defined three classes of canonical terminal.

Basic
chara<
d isp lay.

canonical terminal. This class is modeled uoon the familiar
character-oriented terminal which has either a scrolling or a page

The Canonical Terminal Server (Level 1)
Page 32

Terminal Service Architecture March 5, 1982

Forms canonical terminal. This class of terminal has a display
which is organized into fields (groups of contiguous character
positions) which together constitute a form.

Graphics canonical
d i sp lay.

terminal. This class of terminal has a pixel

The architecture allows the existence of a separate CTS for each class
of canonical terminal. The canonical display and canonical keyboard

each class will be defined to reflect thef o r. . • i « * . , , . , c a p a b i l i t i e s o f a c t u a lterminals of that class. Standard lexemes will be defined to represent
display and keyboard functions of each class.

This section of the Terminal Service Architecture document describes in
detail the Basic CT and the Basic Canonical Terminal Server (BCTS)
The other terminal classes will be discussed briefly in the later
section "Proposals for further applications of this architecture".

5.1 Invoking the BCTS at level 1

[How this happens ... when you would use the basic CT package
rather than some other (e.g. forms) CT package. This function is
intimately associated with the Overseer Initialization Service. The
"appropriate" set of CT services is probably set up once, for all
time, by the Overseer Service. We talk about how the appearance of
various CT services might be achieved in the section "Proposal for
further applications of the architecture".]

5.2 About scroll and page mode

BCTS provides two distinctly different flavors of service, called
scroll mQde and page mode. These have different display behaviors
because the underlying model of a display is different in each mode.
To explain why we did this, here's some of the background.

5.2.1 Real world analogues of each flavor
A SQroll Qlass display functions like a teletype. The characters
are displayed at the cursor (or active) position. The cursor
advances one character position after each character. When a
scro l l c lass d isp lay sees a "new l ine" charac ter o r a
"carr iage return/ l ine feed" character sequence, the display
(usually paper) "scrolls" up by one line so that the cursor
appears at the beginning of a fresh and empty line. Previouslines can no longer be written on (the paper doesn't scroll down)
although the operator may still be able to see them. A "glass
teletype", which is a CRT on which new lines are entered at the
bottom and old lines scroll off the top of the screen, also has
scrol l c lass funct ional i ty.

The Canonical Terminal Server (Level 1) Page 33

Terminal Service Architecture March 5, 1982

A.££i£ Qlass display functions like a sheet of paper with <m>lines eacl oT <n> characters. The cursor (or active) position
can be moved to any of the <m>*<n> positions on the page. When
characters are displayed on a page class display, the cursor
behaves in much the same way as for a scroll class display.
However, the "new line" character or "carriage return/line feed"
character sequences do not guarantee an empty line in a page
class display. Once characters are displayed on a page they must
be explicitly "erased".

5.2.2 Why the models are conceptually different

At first, a scroll class display appears to be a degenerate case
of a page class display, where the number of lines <m> happens to
be one. It might therefore appear that there is really only one
kind of display. This is almost but not quite the case.
The key to th
is in the s
"new line"
"carriage retmode terminal
the "print he
(e.g. of pa
guaranteed to
behavior. On
functions —
cannot move b
the "new line
point - - i f
page display,
unbounded and
effect as any

e difference between scroll and
cro l l ing ac t ion o f the scro l
c h a r a c t e r , o r i t s

urn/line feed" character sequenc
to physically "scroll" -- the

ad" is positioned to the beginni
per on a hardcopy terminal).
be empty, "fresh", regardless o

ly the new line of paper is acce
the platen cannot roll backward

ackwards. Therefore any charact" character are unchangeable. (
the platen and print head can mo
) The length of the "paper" is

each "new line" character ch
of the previous ones.

page class displays
1 class display. A

e q u i v a l e n t , a
e, causes the scroll

platen advances and
ng of a new line

The new line is
f the program's past
ss ib le fo r d isp lay
s and the print head
ers printed before
This is the critical
ve backwards, it's a

considered to be
aracter has the same

On a page d
bounded, a
moves the ac
of the <m>
nothing chancan be move
lines can be
"new line" c
there (which
by an "eras
has a finite
will work un
request that
page, is tr
pos i t i on ing

isplay, which is e
"new line" character
tive position or curs
available lines. The
ges except the active
d "up" , so previous
revisited. The l ine

haracter contains wha
may be empty if that

e line" or "erase di
number <m> of lines,

til there are no "new
cannot work, e.g.,

eated in the same
request.

xpl ic i t ly two dimensional and
is a positioning operator which

or to the beginning of the next
re is no concept of "scrolling";

posit ion. The active posit ion
ly-written positions on previous

the cursor is on following a
tever the program previously put
line had been previously erased

splay"). Since the page display
"new line" character requests" lines. A "new line" character
the cursor at the bottom of the
way as a boundary-violat ing

The Canonical Terminal Server (Level 1) Page 34

■J- cd o 03 3 O 3 H« O 03 H CD 3 H
«

03 CO fD < CD r- CD < CD ~<
3

0} UQ Q U
3

£

Cf

0)

03
H«

 3
*

T3
 0

)
I—

' C
D

 C
D

 0
1

H
-3

cr
 o

i
CD

 3

O

H
-

H-
 O

H
-

•-3 3* H
-

01 01 CD O

C
tfl

)

H
-

H
O

O

CD
 3

"
 O

 O
 3

H
(l

)

3
D

M

H
"D

O

C
L

o

cl CD <

c
f

o Xi
 3

CD
 0

)
O

 0
)

CL
 3

 ▶
■*

)
H-

1
03

O

(D

H
~1

 3
 H

-«

0)
CD 3

Cfl

Cl
" C

D < H
-

C/
»

 H
CD

 3
T3

Cf

O

CU
 C

D
 C

D
"S

 "
S

 0
1

 C
O

~5 O < H
«

Q
.

H
 C

D
CD

 0
1

~S 3
O

H
-

3

3

(-
"

Cf
 0

)
CD

 O CD
 H

0)

^

CD
 O

~i
 <

C
l o
 c

O
 0

1 CD CL
 H

cf
 T

OC CL

£ H

cf

O

c
f

3
*

CD
cf

<

(\d

-a

3*

O
cd

 ?
r

CD
 H

'

H

01

cf

O
 0

1
<

 C
D

H-
 ~

S
CL

 <
D

 (
D

 (
D

 H
-

Cl
 -

J 0)
O

O

O

cf
3

H

-
H

c
t

O
-*

3

O
 0

1
0

0 a> < H
-

O

cf
 0

)
C

T
3

CD
 O

3

3
CD

 -
 0

Q

cr
O

H
-

(D
 O

cf

3*
0) H

«
•—

 c
f

CD
 C

T
Cl

 0
)

rf
(t

H

CT
 C

T
CD

H
-(

D

T
o

i

3
01

H

-
H

fD

3
CD

 T
>

 0
)

<

0)

J-
1

CD
 "

S
H1

 0
3

 3
3

•
 C

f
CD

CD
 .O C

O c 01 O ~1

01 CD < H
-T

Dcr CD "5 H
«

H
-

-s CD 3 CD 3 C
f

01
 0

1

C
L

C
l

01
 O

O

O
cf

C

H
-

3

o
i

3 0)

cr
 -

t
01

01
cr

 o

x>
 •

o 01 H
-

cf

jC
H«

 C
D

O 3 ^
c

r
0)

£
 <

cr
 cd

H
-

0

fl)
cr

 c
l a

s:
 c

d
CD

 C
L

•-♦
> o

i
CD C

D

^
r-1

 C
D

0) "J

cf
CD

 3
"

H
*

C

3
01

 O
Q

CD
 0

1

M
 C

D

0)
 G

Q
cf

•

CD
 C

CD
 1

3

O CD
C

f
3*

*i

j
CD

 O -J
01 CD

 c
f

cf

cr CD
o •"♦

) C
L

CD
-J

 •
->

CD
 H

-
JQ

3

C

H
-

H
-

cf

~S
 H

-
CD

 O
3

3

CD 3

O
Cf

 >
-*>

01 TJ

03
"J

 0
1

CD
 0

1
01

 H
«

CD
 O

3 c
f

CD
 O

CL
 0

1 3
H-

 O
CS

 3 H
-

Cf

O
3*

 0
)

CD
 J

-"

O 0)

.-
3

 C
D

O
 "

1
3

3

H-
 H

O

3
0)

 0
)

u> 3
"

CD 0
3

0) 03 H
*

O O CO CD < H
*

O CD 01

C
L

H
-

r-
'c

r
oi

 n
i c

d
X

I
01

 "
»

H
 0

1
 C

D
0

1

»
-*

}
^

a

o
H-

 "
J

•-•
i

01
 C

D
O

 •
o-

01
CD

 «
<

O H
«

C
f

01

0
 o

-J

l_
J

0) 01
cf

O

01

H-
 O

 C
D

O

3

01
cj

 -
a 01

o

0

cf

^>

cr

C
l

Cf
 H

«
 H

-
cr

 h
-1

 o
i

CD
 H

-T
D

cf

*-
*

TJ
 «

<
 0

3
-J

«

<
cd

 s
:

01
 H

-
 3

CD
 c

f
C

3
cr

 o
i

c
f

c

f
•

c

f sr
 c

r
(D

 C
D

T3

0)
fl)

 <
01

 0
1

cf

H
-

-

h
-1 0)

oi
 c

r
3

f^

cl
 a

>

01 -o 0)
 0

1
UQ CD

01
0

O

J-
1

 -
J

01

o

-J CD 3 c
f

01

01

>
Cf

O

-

tt
)

T

O
3

O

0)

Cl
 J

-1
 O

Q
0)

 f
-1

 C
D

CL
 O

*<

h
-»

C
f

0)
 0

1
?r

 <
 t

j
oi

CD
 0

)
T

H»
 O

 C
L

 U
.

0)
 H

-»
(jq

 H
«

 H
«

CL
 Q

)
T

 0
1

 w
<

 C
T

 Q
)

TO
 T

D
01

 h
-»

 3
 h

->
 MO

I-1
 H

-1
01

 0
1

01
 0

1 01

0)
 Q

)
3

 C
D

Cf
 •

0
1

H

*
U

Q

3

^-
»

O

CD
 >

 C
f

m
j

Q
)

O
Q

 C
D

 O
 3

O H
)D

H

,
0)

 C
D

TJ

O

O

X
01

 O
 C

D
 0

1
 0

1
3 T
>

3

C
t

H
f

t
O

 C
D

01

CJ
Q

CS
CD

 0
1 CD

0

£>
H*

 C
0

)

C
D

H

«
01

 3
 T

D
 3

01
 O

 fl
)

CD
 O

Q
 0

1
C

L

fD

O
H

»

C
J

1

0
1

O

C

D
"O

 C
f

O
 C

D
H

*

t-
>

3

01
 3

 0
1

<<

P

M

(D

cr CD c
f

c
f

CD -s cr c 3
01

3

w

Cl

qj

*<

H
-

3

c
f

O
 C

L
 O

 H
-

^
H

-

T

3
oi

oi

cl

ef
 T

3
O

 H
-

Cl
 q

)
0)

 <
<

*<
 0

1

01
H

-
T3

 0
1

^^
C

D
•

~S 0)

CG
 O

O

,D
s: CD

 c
f

<

3
"

CD
 0

1
M

"1

3

^
3

-

O
O

00
 c

f
0)

 0
)

•a

c
f

-s

o
O

C

l
0

Q

)
CD

 «
<

0
1

-

01
 0

1
O ~S 01 01 o 3

0)
CD

 O
O

 c
f

O -
i

CD C
L

T
3

h«

^
cf

O

0
O

Q
T

 -
J

01
 fl

)
-

3 01

01 3 CL
 I

I
3 o 01

 H
-

cf

3 O
cf

t-

'
O

C

0

C
L

•-
•h

-
01

 3
• O

Q

O

cf

cf
o

 c
r

cd
3

fl)

T

3

3
O

X)

H

-
3

T

3

CD
 0

1
a

 t
 h

CD
 C

D
 0

1
CJ

 .
O

o
 c

 c
r

3

H
-

0)

H-

01

<
H'

 C
D

c
f

CD
C

L

O
 0

1
-1

 ID

O O 3 -a H
-

t-1 CD 01 o o 3 3 01 3 C
l

0
1

\~

>
0)

 0
1

o
i

*<

;
O

t)

M

"J
 0

1
oo

q

j;
H

(D

H
'

H
*

C

f
o

cr
0

H

--
t—

»
 Q

)
cf

O
i

oi

K

01

01

o
0

1

I
C

l

C
l

CL
 J

-"
 H

«
H

'W

3
oi

 *
a

cd
T>

 h
-»

 3
H

Q

)

(fl
0)

«<

H-

*<

•

O 3
*-

>
•

Q

)
W

2

H
O

0)
 £

 o
01

 C
D

 C
01

 <
 ~

S
C

 C
D

 0
1

3
"s

 o
CD

-

"$

C
l

01
 X

i
cr

oi

O

*<

o
i

cf

H
-

3

cr

cf
0

 C
D

 H
«

0
1

o

cf

i-1

3
CD

 H
*

0
)

3

O
 0

1
 O

Q
*"

*>
 c

f
-

CD
 H

«
 C

D
O

Q
 -

S
•

3

>
.

h

-
3

cf
 0

1
cr

t-1

CD
 0

1

>
 £

CO
 H

-
33

cf cr C

l
?^

H

-
00

oi

?
o

-a

3

o
i

O
 «

-<
CL

 0
1

CD t-1
 c

r
01

oo
 <

ui
 H

-
-

3 OQ

01 T

O
CD

 3

3

»<
;

O i—
1

01
o

 o
3

-S

O
Q

 O
CD

 H
-1

-J

M

c
f cr
 o

.
o 01 -a

>
 0

1
*-•

 c
r

3
h-

0
 »

-•
01

 H
«

cf

cf H
-

01
 C

D
i—

' 0
1

H
-

M

0

01
3

01

01
 0

1

Cf
 C

L

ro
 a

a
 e

ra
 h

x

H-

H«

i<

h-

cr
01

01

01

01

C

D
3

 t
>

 X
i

o
 1

3
T

J

H
H

C
H

w
I—

1
 0

)
01

 ~
S

 0
)

O
C

D

<<

*<

«<

-J
0

1

0
1

O

j—
i

•

a

H

>
H

03

01

O

C

H
-»

2

3

h
,3

a
-^

cf

o

u
i

>

c

c
to

ro

m

o
i

-^
 s

:
3

 -
s

0
 C

D
 O

 C
D

0»
c

f

c
f

C
D

C

D

01
"J

3

01

3

3
C

H

C
L

«
<

h

-
h*

h-

>

t-
>

«

01

C
J

Q

)

X
J

01

C
f

"J

0)

I—

1
•—

'
CD

 C
D

 -
S

 0
0

 0
1

01

01

C
D

O

*<

•

0
1

J

-1

"*
--

^
O

O

T
 C

L
 O

 H
-«

 H
-

0
 H

-
 C

 H
-"

 0
1

I—
''O

 -
j

o
f-1

 C
D

 l
-J

 C
f

Q

01

3

01

3*
l-1

^

cf

01

C
D

01
 0

1
 H

-*
 0

1
0

1

<
<

01

O

i-
tj

j—

i
01

 0
1

 C
D

 C
D

•-•
>

 3
 C

 Q
>

 Q
)

O

X
i

c

f

o
i

~s
 o

 -a
 c

 c
f

-a
 o

 -»
Cf

 C
D

 T
 C

D
cr

t

cf

oi

o

O

0
1

C

D

O
oi

cf

cl

oi

3

C
D

C

D

-J

3
cr

 c
d

 o
s:

oi

<<

3

cr
 o

i
H

'

-a

O

C
l

O
 0

1
 3

3
 O

 C
D

cr
 o

 n
 3

 3
T

2

3

O

C
l

O

O

O

3

O

H-
"

00

3

H-

3

H
-1

H

-*

3
▶

"♦
><

<: o
i

c
f

O

c

f
-

O

T

O

^

01

0)

01
O

M

H

(D

O
•7

5
01

 H
-1

 C
L

>-
»)

O
l

H-
 -

S
 H

-
00

h-
 T

J
O

i
cf

 c
r

O
•

3

fD

3

H
*

3
 0

3
 O

 3
"

cd
 c

r
K>

•-•
j

01
 C

f
3

Xi
 U

Q
 "J

 C
D

cr
 <

•
O

 C
 C

D
 O

H(
D

O

0
)

H

'
U

l
I

H

3

fl)
C

D

J-
"

O

l
<

 o
3

cf

cf
3

ra

-'

o
H

«

C
sC

0)

01

-

cf
C

D

o

"*
O

01

s
r

c
f

s

r
3

O

O

-s
 (

-«
*<

H«
 H

"
01

 C
D

tt

^
1

1

-•
 0

1
 *

<
O

 3
 s

:
0

3

O

I-
.

•*
s:

3

H
-

0

1
C

f

T
CD

cf
 C

f
O

H
*

T

3

0
3

c
f

01
 3

*
 O

 -
J

o
 c

r
03

 3
oo

 s
r

3
cr

 c
d

 c
r

o
CJ

 O
 O

Q
 C

l
O

 C
D

CD
O

H

-

J
-»

cf
 C

D
CD

C

3

t-
1

H
-

3

"

T
D

CD
 O

C
L

cf
 O

 O
Q

03
 —

 O
 f

ll
03

T

0
1

0
1

--

'O
O

Q
cr

C
f

C

D

C
S

C

•

fl
)

xs
 o

o
cr

 o
i •

-»
)

cl
CD

sr
 3

c
f

CD
 c

f
~J

o*
<:

h-

cr
H

-
0

*
0

O
H

O
03

O

o
 o

 3
 o

i
3

cr

-
H«

 0
3

3
O

3

O

Q
CD

O

H
o

CD
01

03
C

L
H

-

O
03

 C
l

o
H-

1
 C

l
CD

01

O

3

O
CD

 3
H

-
i-

1
H

)(
D

Q

)
O

 fD
01

01
H

-1

3
TD

 H
«

CL
 X

3
O

c

f

O
03

 o
i

s:
H'

 h
->

01
 3

 <
<

 3
"S

 H
-

 H
"

01
 O

)
cf

 C
D

 "
CJ

 H
«

cf
 o

 »
-"a

 ■
<:

•
 s

:
CD

 O
H

-

3

!-
•

H-
«

03
01

01
O

»-

•
c

cf
 c

r
<<

 (
D

o
»-

^
H

O

fl
)

01

X
0)

01
sr

3

O

C
l

"J

fl)

fl)
£

 H
-

O

03

H-
3

 c
r

h-
 c

r
3

D

01

c:
 m

h-
1

 H
-

H-
 o

 -
a

T
D

H

fD
*-■

 cf
O

3

H

sr
 0

3
Q

)

H
'Q

)
<

<

cf
cr

 c
f

!-•
 O

 «
<

01
 C

D
 c

f
cd

 s
;

03
 0

1
H

'

O
M

O
 C

D
03

C
L

03
 H

«
cr

H*
 C

L
Q

3
H-

»
Cf

 C
D

H-
1

C
L

0
1

H

'l
C

T
3

CD
H

-
"O

 0
1

 C
D

CD
 C

H
t>

a
T

h

c
f

^•
J

0
3

f

H
-

Q

3
CD

«<

0)

C
l

03

Cf

cf
"J

01
 *

<
 H

«
Xi

 s
r

fD
CD

CD
M

j
i-«

 C
D

cf
 *

-<
>

03
c

f
O

CD
<<

w

o
H

1
X

J

-s
O

 3
03

"J
 0

3
 C

D
"*

 h
->

Cf
 C

L
CD

 C
S

 3
H

'
0

<
<

CD
 H

-
<

O

cf

01
 »

-•
01

H
«

cf

t-
1

cr
-o

o

cr
c

f
O

 H
C

 C
D

 H
-

03
 o

 s
r

cf
 o

i
01

"J

3

3
 -

1
 C

D
cr

«<
:

CD 3 H
-

3 03 0
0

CD "J < H
'

O CD > -J O cr H
-

C
f

CD O C
f

C -1 CD 0) ~s o cr C
O (\
3

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 3 2

Funct ional Specificat ion.

BCTSclients (either programs or other components of the Terminal
Service) will access these services through lexemes. BCTS will
perform a display service (e.g. display graphic, erase display)
when it receives the appropriate lexeme from a client; and it
performs a keyboard service (e.g., application function key) by
generating a lexeme to be provided to the client [awkward]. Thelexemes associated with services are listed along with the service
desc r ip t i ons .

5.3.1 Appearance of a standard display

BCTS behaves as though it were performing display requests on a
standard d isp lay, ca l led the canonica l d isp lay (CD). Any
differences in behavior between the canonical display and the
actual physical display in use will be hidden by BCTS; as far as
the client is concerned, the physical display IS a CD.

The canonical display is an array of character positions, each of
which can hold a displayable character and can have an associated
highl ight. (See "Character Display Services" and "Highl ight
Serv ices" .)

Associated with the canonical display is an active position (AP)
which is the CD location at which the next display operation will
take place. Most canonical display operations refer to or change
the active position (or both). The active position can be
controlled by the program. (See "Position Services".)

The canonical display comes in two flavors: scroll and page.
The scroll CD is a one dimensional array — a "line" with {m}
columns. The page CD is a two dimensional array — a "page" with
In} lines, each of {m} columns. BCTS always supports a scroll
CD, and may support a page CD. The program can determine whethera page CD is available, and can select page or scroll mode,
through the Parameter Management Service.
The size of the CD (number of columns for a scroll CD, number of
columns and lines for a page CD), is determined by BCTS. The
program can access these values through the Parameter Management
Service.

5.3.2 Appearance of a standard keyboard

BCTS behaves as though it were connected to a standard keyboard
which had a standard set of keys; this standard keyboard is
called the canonical keyboard (CK). Any differences in keyboard
repertoire between the canonical keyboard and the actual physical
keyboard in use will be hidden by BCTS; as far as the client
concerned, the physical keyboard IS a CK. i s

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 36

Terminal Service Architecture March 5, 1982

The canonical keyboard has about 160 keys, which are grouped into
categories according to the type of lexeme the keys generate.
(Most real keyboards have far fewer keys; they use shift and
control keys to make it possible to generate several lexemes with
the same key, appropriately modified.

o Graphic keys generate graphic lexemes. Graphic lexemes
represent all 95 ASCII graphic characters, including "blank".
Format effector keys generate
effector lexemes. (There is
<space> lexeme.)

seven of the
no key which eight format

generates the

The Bell key generates the <bell> lexeme.

Control keys generate the control lexemes that represent
those ASCII control characters which are neither format
effectors nor BEL. (The fact that most real keyboards have a
single "control" key which modifies the actions of Graphic
keys so that they emit <control> lexemes is irrelevant forthe definition of the canonical keyboard.)

Display function keys generate lexemes
guaranteed canonical display functions. that represent the

o App l ica t ion func t ion keys genera te app l ica t ion func t ion
lexemes. These lexemes have no predefined association with
any CT concepts or display effects. Application function
lexemes may have meaning for applications, but do not for the

o Te rm ina l - spec i fic f unc t i on keys a re keys on phys i ca l
keyboards that have no other meaning to the CK; thpy
generate the <terminal-specific> lexemes. Terminal-specific
keys are like application function keys in that they have no
predefined association with any CT concepts or display
e f f e c t s . Te r m i n a l - s p e c i fi c k e y s a r e d i f f e r e n t f r o m
application function keys in that their presence is dependent
on the physical terminal type and is not guaranteed by the
a rch i tec tu re .

Each canonical key generates a standard lexeme. A list of
canonical keys and their corresponding lexemes is is figure 5.1.

Graphic, format effector, bell, control, and display function
keys are guaranteed to exist on all canonical keyboards.
Application function and terminal-specific function keys may be
avai lable; the program can inquire about their avai labi l i ty
through the Parameter Management Service.

The Canonical Terminal Server (Level 1) Page 37

Terminal Service Architecture March 5, 1982

Key Class

Graphic
Format

E f fec to r

Bel l

Control

Display
Function

App l ica t ion
Function

Terminal-
s p e c i fi c
func t ion

Key Name

"a", ")", etc.
Back Space
Horizontal Tab
Vertical Tab
Form Feed
New Line
Carriage Return
Line Feed

Be l l

Lexeme Produced

<a>, <)> , etc .
<BS>
<HT>
<VT>
<FF>
<NL>
<CR>
<LF>

<BEL>

"NUL", "DC1", etc. <NUL>, <DC1>, etc.
Posi
Posi
Posi
Posi
Posi
Eras
Eras

o
Eras

o
Eras
Eras

o
Eras

o
Eras
Inse
Inse
Dele
Dele

tion Up
tion Down
tion Left
tion Right
tion Home
e Character
e to Beginning
f Line
e to End
f Line
e Line
e to Beginning
f Display
e to End
f Display
e Display
rt Character
r t
te
t e

Line
Character
Line

< p o s i t i
< p o s i t i
< p o s i t i
< p o s i t i
< p o s i t i
<erase
<erase

o f
<erase

o f
<erase
<erase

o f
<erase

o f
<erase
< inse r t
< i nse r t
<delete
<delete

on up>
on down>
on left>
on right>
on home>
character>
to beginning
l ine>
to end
l i ne>
l i ne>
to beginning
disp lay>
to end
display>
disp lay>
character>
l i ne>
character>
l ine>

A p p l i c a t i o n < a p p l i c a t i o n
F u n c t i o n (0 . . . 1 6) f u n c t i o n { 0 . . . 1 6 } >

Terminal dependent <terminal-specific
function {0...m}>

r i gu re 5.1: The Canonical Keyboard
by key class

The Canonical Terminal Server (Level 1) Page 33

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

5.3.3 A standard communications protocol

BCTS communicates with clients through standard PDA streams which
carry standard BCTS lexemes. BCTS provides any translation (e.g.ASCII to EBCDIC), repackaging (e.g. SDLC framing), and protocol
(e.g. "request to send" -- "c lear to send") required for
conversation with the physical terminal. The client uses only
standard PDA stream interfaces.

5.3.4 Character display service

The character display service allows a program to display any
AbLll graphic character at the current active position. (The
active position is modified either implicit ly or explicit ly by
t h e P o s i t i o n s e r v i c e .) J

There are 95 graphic characters (including blank); each is
represented by a graphic lexeme, for example <a>, <A>, <=>,
<blank>. The notation <graphic> will be used to represent any
g r a p h i c l e x e m e . J
The character display service is invoked by each of the <graphic>
l e x e m e s . ^

BCTS currently supports only ASCII graphics. In the future, this
service may be extended to support additional graphics, including
l ine drawing characters, word processing characters, APL
characters, and VIDEOTEX characters.

5.3.5 ASCII Format Effector services
The format effector service allows a program to move the active
position on the display in a way that conforms to the ASCII
definitions for format effectors.

BCTS provides these services in response to <format effector>
lexemes.
o <BS> or <back space>

The active position is moved backward one position on the
same line.

o <HT> or horizontal tab>
The active position is advanced to the next predetermined
character position ("horizontal tab stop") on the same line.
Horizontal tab stops are defined every 8 positions on a
canonical display line.

o <LF> or <line feed>
The active position is advanced to the same character
position on the next line.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 3 9

Terminal Service Architecture March 5, 1982

<VT> or <vertical tab>
The active position is advanced to
position on the next predetermined
stop"). Vertical tab stops are defined

the fi rs t cha rac te r
l i n e (" v e r t i c a l t a b
every 8 lines.

<FF> or <form feed>
The active position is advanced to the first character
position of the first line of a new "form". BCTS determines
what constitutes a form for this terminal type.

<CR> or <carriage return>
The active position is moved
of the same line.

to the first character position

<NL> or <new line>
The active position is
of the next line.

moved to the first character position

<SP> or <space>
The active position is moved forward one
on the same line.

character pos i t ion

The effect on the active position of hitting a display boundary
(bottom, left, or right) is in most cases the same as that
described under the "Position" service. The exceptions are for
the <NL>, <LF>, <VT> and <FF> format effectors when the canonical
display is a scroll CD. In this case, these format effectors by
definition cause the "scrolling" action associated with scroll
terminals; the effect on the (single line) scroll CD is to
re- in i t ia l i ze a l l i t s charac ter pos i t ions to defau l t (b lank ,
unhighlighted) values.
The format effectors are most useful with a scroll CD, since the
scroll CD is a model of the kind of terminal for which format
effectors were invented. When the canonical display is a page
CD, the actions associated with format effectors are similar toor duplicated by actions associated with other, more general
posi t ion services. BCTS cont inues to supports the format
effectors for page mode because we believe that all ASCII
terminal constructs should be supported in basic class.

5.3.6 Alarm service

The alarm service lets the
terminal's "bell" to get the terminal
invoked by the <bell> lexeme.

program invoke the canonical
user T s a t t e n t i o n . I t ' s

The Canonical Terminal Server (Level 1) Page 40

Terminal Service Architecture March 5, 1982

5.3.7 Position services

The position
pos i t ion
fl a v o r s .

service allows the program to move the active
position to another point on the canonical display. It has three

Implicit active position advance,
(invoked by all <graphic> lexemes)
Whenever a character is placed on the display, the active
posit ion is automatical ly moved forward by one. (See
'Character Display Service".) The active position is also
moved as a side effect of the erase line / erase display
services. (See "Erase Services".) This kind of positioning
is supported on both scroll and page CDs.

Format effector positioning.
(invoked by all <format effector) lexemes)
This kind of positioning is supported on both scroll and page
CDs, although the actions of vertical format effectors (NL,
FF, etc.) are different on the different types. (See "ASCII
Format Effector services".)

Explicit active position movement.
(invoked by all <position> lexemes)
BCTS provides a small number of primitive positioning
operations which cause either absolute or relative active
position movement. This kind of positioning is available
onIy when the canonical display is a page CD.

<position horizontal {column}>
The AP is moved to the specified column
l i n e . on the current

<posit ion vert ical { l ine}>
The AP is moved to the same column on the specified line.

<position absolute {line, column}>
The AP is moved to the specified position on the display.

<position home>The AP is moved to the first position on the first line
of the display.

<position up>The AP is moved up one position.

<position down>
The AP is moved down one position.

<posit ion left>
The AP is moved one position to the left.

The Canonical Terminal Server (Level 1) Page 41

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

o < p o s i t i o n r i g h t >
The AP is moved one position to the right.

The Canonical Display has boundaries. If the positioning service
is requested to move the active position outside the boundaries
of the CD,

o the position request is ignored (the AP stays where it was),

o the component (column or line) of the AP which has been
violated becomes undefined, and

o any successive lexemes received by BCTS whose operation would
re fe rence the undefined component o f the cur ren t ac t i ve
p o s i t i o n w i l l b e i g n o r e d u n t i l t h e a c t i v e p o s i t i o n i s
positioned back within the boundaries of the CD by a <format
effector> or <posit ion> request.

For example, a character display request is received when the AP
is at the last column of a scrol l display. The character is
d i s p l a y e d , b u t t h e i m p l i c i t a d v a n c e i s i g n o r e d , a n d a l l
successive display requests will be ignored until a <CR>, <NL> or
<FF> (which don't need to know the current column number to be
per formed) . As another example , a <pos i t ion up> request is
received when the AP is on the top line of a page display. The
< p o s i t i o n > r e q u e s t i s i g n o r e d , a n d a l l s u c c e s s i v e d i s p l a y
r e q u e s t s w h i c h r e f e r t o " c u r r e n t l i n e " w i l l b e i g n o r e d —
< p o s i t i o n d o w n > a n d < H T > , f o r i n s t a n c e . B u t a < p o s i t i o n
vertical> or <position home> will be accepted and display can
continue normally again.

The program can read the current value of the active position
through the Parameter Management Service.

5.3.8 Erase services

The erase service allows a program to erase part or all of the
display. A character position which has been erased contains a
blank instead of whatever character it held before, and has no
h i g h l i g h t i n g .

BCTS supports these primit ive erase services, invoked by the
specified <erase> lexemes.

o <e rase cha rac te r)
The character position at the active position is erased.

o <erase to beginning of line>
All character positions preceding the active position on th*
current line are erased.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) p a (7 e 42

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

o <erase to end of line>
All character positions from the active position (inclusive)
to the end of the current line are erased.

o <erase line>
All character positions on the current line are erased. The
active position is moved to the first position on the current
l i n e .

o <erase to beginning of display)
All character positions preceding the active position on the
display are erased.

o <erase to end of display)
All character positions from the active position (inclusive)
to the end of the display are erased.

o <erase display)
All character positions on the display are erased. The
active posit ion is moved to the first posit ion of the
d i s p l a y.

5.3.9 Highlight services
The h igh l i gh t se rv i ce a l l ows a p rog ram to spec i f y the
highlighting to be applied to character positions on the display.
Particular highlight settings are called "visual attributes" or
" a t t r i b u t e s " .

o Highlighting: bold, blink, underline, reverse video, etc.

o Color: foreground and background.
o Font or typeface

o Probably others to be defined.
The program invokes the service by sending a <define highlight)
lexeme. BCTS will then apply this highlighting to each character
position into which it writes a displayable character, until the
next <define highlight) lexeme. For example, the lexeme sequence

<define highlight {bl ink})
<A> <C>
<define highlight {bold, underscore})
<D> <E> <F>

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 4 3

Terminal Service Architecture March 5, 1982

wi l l resul t
they blink,
with underscores

in characters A, B, and C
and characters D, E, and

(but not blinking).
being displayed so that

F displayed in boldface and

The lexeme <define highlight {none}) will
displayed characters to have no highlighting
The program can read the set of highlights
through the Parameter Management Service.

cause
at all. subsequently

c u r r e n t l y i n e f f e c t

5.3.10 Insert/delete services
The insert/delete services allow programs to open or close space
on the canonical display. The program will use <graphic> lexemes
to put graphic characters into the space at the active position
opened by the insert service. Graphic characters will be removed
at the active position by the delete service.

o <insert character)
All characters from the active position (inclusive) to the
end of the current line are moved forward one position. The
character position at the active position is erased. The
character previously at the end of the line is lost.

o < inser t l i ne)
All characters on all lines from the current line (inclusive)
to the end of the display are moved down one line. The
current line is erased. The previous contents of the last
line are lost.

o <delete character)
All characters following the active position on the current
line are moved backward one character. The last character
position of the line is erased. The character previously at
the active position is lost.

o <delete l ine)
All lines following the current line on the display are moved
up one line. The last line of the display is 'erased, The
previous contents of the current line are lost.

BCTS supports insert/delete
display is a page CD.

services only when the canonical

The Canonical Terminal Server (Level 1) Page 44

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 3 2

5.3.11 Visible cursor

Normal ly, a v is ib le cursor is associated wi th the act ive
position. The cursor thus serves as visual feed back for the
terminal operator. Under some circumstances programs may wish to
update the canonical without disturbing the terminal operator by
also moving the cursor (most notable is supporting "windows",
discussed in the next section). The cursor service allows the
program to update the canonical display without moving the
c u r s o r . &

o <bind active position)
The active position is bound to the cursor. As a result the
cursor position becomes the active position and when the
active position moves, the cursor also moves.

o <unbind active position)
Theactive position is unbound from the cursor. Moving the

#active position does not move the cursor.
BCTS supports the "separate cursor" service for both scroll and
page CDs.
The program can read the current cursor position through the
Parameter Management Service. The program will also be able to
modify the visual representation of the cursor through the
Parameter Management Service.

5.3.12 Miscellaneous services

[Transparent, repeat, terminal-specific function]

5.4 BCTS Interfaces

This section provides an overview of interfaces used by BCTS clients
to access BCTS services.

5.4.1 Display/Keyboard interfaces (lexemes)

BCTS generates and responds to individual lexemes. It reads a
lexeme at a time from its input stream and performs the
associated display service. It generates a lexeme at a time,
which it write to its output stream, in performance of a keyboard
serv ice.

Figure 5.2 lists the lexeme vocabulary used by BCTS. An "X" in
the column labeled "Scroll CD" or "Page CD" indicates that that
lexeme invokes a display service for that kind of canonical
display; no "X" means that that lexeme is ignored. An "X" in
the column labeled nCKu means that the canonical keyboard can
generate that lexeme; no "X" means that the CK will never

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) ? a ? e 4 5

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

S c r o l l Page
CD CD

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X X
X
X

X X
X X

Lexeme name

all <graphic) lexemes
<backspace)
<horizontal tab)
<line feed)
<vertical tab)
<form feed)
<carriage return)
<new line)
<space)
<bel l>
all <control) lexemes
<position horizontal {column})
<posi t ion vert ical { l ine})
<position absolute {line, column})
<position home)
<position up)
<position down)
<posi t ion le f t)
<posit ion r ight)
<erase character)
<erase to beginning of line)
<erase to end of line)
<erase line)
<erase to beginning of display)
<erase to end of display)
<erase display)
<insert character)
<insert l ine)
<delete character)
<delete line)
Appl icat ion funct ion {se lector})
<define highl ights {selector})
<bind active position)
<unbind active position)
<repeat {number})
t ransparent {byte str ing})X < t e r m i n a l - s p e c . f u n c t i o n { s e l e c t o r })
<n i l>

Figure 5.2: Lexemes used by BCTS

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 46

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

produce that lexeme.

5.4.2 Management interfaces (parameters)

[List of all parameters and values]

5.5 About the BCTS server
A functional design for BCTS will include descriptions of

o da ta s t r uc tu res : ob jec t s wh i ch ma in ta i n s ta te , desc r i be
services, or otherwise hold information needed by BCTS to
perform services;

o workers: little servers which perform the BCTS services in
response to the receipt of display lexemes or during the
generation of keyboard lexemes.

[We're not sure that this type of functional design material belongs
in this architecture document as it's currently scoped, but h*re it
is anyway.]

5.5.1 Structures used in BCTS

In this section we describe the data structures used by BCTS.

5.5.1.1 The Display Structure

The Display Structure is a one-dimensional (scroll mode) or
two-dimensional (page mode) array of cells. BCTS uses it to
keep track of all changes to the physical display, because
BCTS may need to refer to the current state of the physical
display in order to perform some requested operations (e.g.,
"insert character" may require copying existing characters on
the display to new locations). A particular implementation of
BCTS may not need to maintain a display structure if the
physical terminal's behavior is close enough to that of the
canonical display.

5.5.1.1.1 The "Cell"
The addressable unit of the line and page is the cell. A
cell has several fields. Operations that manipulate cells
may cause changes in any or all fields of the cell.
o Character

The chaTacter field of each cell contains an encoded
representation of a single graphic character. When the
cell is mapped onto a physical display, the appropriate

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 4 7

Terminal Service Architecture March 5, 1982

graphic will be made visible in the display position
associated with this cell. The contents of this field
will be interpreted as an ASCII character value.

A t t r i bu tes
The attributes field of each cell contains the visual
characteristics to be applied to the character when it
is made visible on a display. Attributes may include
highlighting information ("blinking", "reverse video"),
color information (possibly foreground and background
c o l o r s) , a n d f o n t / t y p e f a c e i n f o r m a t i o n (" g o t h i c " ,
" i tal ic") .

State
ThF state field of a

"a whole.
, wh ichattribute fields may

cell as
"undefined"

cell contains flags which describe
O n e s u c h s t a t e v a r i a b l e i s
means that the character and

not be interpreted.
A cell which contains a blank character and a default ("no
highlighting") set of attributes is said to be "erased".
When a cell is bound to a position on the physical display,
the cell's graphic character is displayed, with the cell's
attr ibutes, at the bound posit ion. Within reason, the
Canonical Display Worker wi l l emulate graphics and
attributes that are not directly supported by the physical
t e rm ina l .

5.5.1.1.2 The "Line"

A one-dimensional array of cells is a line. A line, when
operated on by the proper rules, is the scroll display
structure. The line is necessary in the page display
structure to define the semantics of some lexemes, e.*.,
insert line or delete line.

Lines have these characteristics.

They have a fixed number, <n>, of cells or length.
The cells within a line are numbered by column numbers
from 1 to <n>.

A line is considered to be horizontal, as we are used
to thinking of display lines on a terminal, so that
^ef^ refers to lower numbered columns, and right refet o h i g h e r n u m b e r e d c o l u m n s . — 2 — r s

Two cells of a line are considered adjacent if thei"
column numbers differ by one.

The Canonical Terminal Server (Level 1)
Page 43

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

T h e l e n g t h o f a l i n e u s u a l l y r e fl e c t s c o n s t r a i n t s
i n t r o d u c e d b y s o m e p h y s i c a l d i s p l a y. c o n s t r a i n t s

5.5.1.1.3 The "Page"
A two-dimensional array of cells is called a page. A pa**
is the page display structure, the scroll dispTa7~structure
never uses a page.

Pages have these characteristics.
o A page has a fixed number of lines, <m>, or height. A

page whose height is 1 is indistinguishable "from a
l i n e .

o Cells within a page are numbered by a coordinate pair
of line and column number: column numbers are defined
above, line numbers range from 1 to <m>, where <m> is
the number of lines in the page.

o A page is considered to be a vertical arrangement of
lines, as in a display of a CRT. In this context,
fboye refers to lower line numbers, and below refers tohigher line numbers.

o Two cells of a page are considered adjacent if their
line number is the same and their column numbers differ
by one.

The size of a page usually reflects constraints introduced
by some physical display.

5.5.1.2 The Keyboard Structure

This is a table that defines the relationships between
physical keystrokes and lexemes.

5.5.1.3 The active position

The active position is the location of a cell in the data
structure. It is BCTS's internal representation of the active
position associated with the canonical display.
The active position is expressed as the coordinates of a cell.
For a scroll display, which is explicitly one-dimensional, the
active position is a single column number {x}. For a page
display, which is two-dimensional, the active position is a
line and column pair {y,x}.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a ^ e 4 9

Terminal Service Architecture March 5, 1982

5.5.1.4 The cursor

When the display structure is mapped onto a physical display,
the cursor provides the terminal user a visual representation
of "where things will happen next". The cursor is maintained
within BCTS as a structure consisting of:

a cell position
position), and

(the format is the same as for the active

a description of the visual representation of the cursor
(a cursor glyph). [We don't know what a good set of
cursor glyphs should be.]

5.5.1.5 The attribute register
The attribute register is a data structure which contains a
set of visual attributes. As <graphic> lexemes are bound to
to cel ls in the display structure, the contents of the
attribute register are copied into the attribute field of the
c e l l .

5.5.1.6 The cursor glyph register

The cursor glyph register is a data structure which contains
instructions for the display of the cursor. Whenever the
cursor is moved to a new cell, the contents of the cursor
glyph register are applied to that cell. [This will probablybe a highlight value such as reverse video or underscore;
however, we're not sure we want to rule out use of graphics ascursor glyphs.]

5.5.1.7 The previous lexeme register

The previous lexeme register contains the lexeme received
before the current lexeme. BCTS will use this register wh<-n
processing a <repeat> lexeme. The initial value of th*
previous lexeme register is <nil>.

5.5.1.3 The scroll/page mode toggle

The Canonical Terminal Server (Level 1) Page 50

Terminal Service Architecture March 5, 1982

5.5.1.9 The transparency toggle

5.5.1.10 Boundary violation toggles

5.5.1.11 Hardware echo toggle

5.5.1.12 Cursor-AP binding toggle

5.5.1.13 Overstrike/replace toggle

5.5.2 Workers
The model of the Basic Canonical Terminal Server consists of two
workers ("workers" are defined in the Concepts section of this
document). These workers are:

Lexemes To / From
Higher Levels of

the Terminal Service

+ +
I Canonical j
I Display j
i Worker |
+ +

+ +
I Canonical j
I Keyboard !
i Worker |
+ +

Commands To / From
the Physical Device

Figure 5.3: Inside the Canonical Terminal Server

The Canonical Terminal Server (Level 1) Page 51

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

o The Canonical Display worker. This worker receives lexemes
from servers at higher levels of the architecture, modifies
the internal structures (display structure, active position,
etc.) as indicated by those lexemes, and emulates the CD on
physical displays.

o The Canonical Keyboard worker. This worker takes input from
the physical keyboard, converts the input into lexemes, and
passes the lexemes to servers at higher levels of the
a rch i tec tu re .

The Canonical Display and Canonical Keyboard workers of the Basic
Canonical Terminal Server are discussed here in separate
sect ions.

5.5.2.1 The Canonical Display Worker

The Canonical Display Worker applies these rules as it
receives lexemes from above.
o Upon receipt of a transparent {byte-string}) lexeme, the

worker interprets the {byte-str ing} as one or more
eight-bit bytes to be sent direct ly to the physical
t e r m i n a l . T h e b y t e s w i l l n o t b e t r a n s f o r m e d o r
interpreted, but they may be packaged according to the
requirements of the physical terminal protocol . The
display structure, act ive posi t ion, cursor, and other
structures maintained by the Canonical Display Worker are
unchanged during the <transparent) operation. A program
using transparent) lexemes is responsible for resolving
any resu l t ing d i f fe rence between the phys ica l and
canonical displays.

(sc ro l l o r
(See Figure

Any lexeme which is not defined for this type
page) of canonical display, will be ignored.
5.2 for a list.)

If the HORIZONTAL-FAULT flag is SET, a lexeme whose
associated operation requires any reference to the current
column value of the active position will be ignored. A
simi lar rule concerning l ine posi t ion appl ies i f the
VERTICAL-FAULT flag is set.

If the lexeme passes the above tests, then the service
associated with that lexeme is performed, and the display
structure, act ive posi t ion, (possib ly) cursor posi t ion,and other structures are changed as appropriate.

If the performance of the lexeme assigned a new column
value to the active position, the HORIZONTAL-FAULT flag is
reset. A similar rule applies to VERTICAL-FAULT.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 52

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 3 2

o Whether the lexeme was performed or ignored, a copy is
stored in the previous lexeme register before the next
lexeme is examined.

r u l e s ,ved to a
[The lexeme-by-lexeme detailed descriptions of display
which were present in the first draft, have been rerao,..
different document. We believe that those descriptions can
now be derived in a straightforward manner from the BCTS
serv ice defin i t ions .]

5.5.2.2 The Canonical Keyboard Worker

The Basic Canonical Terminal Server provides a Canonical
Keyboard (CK) to go along with the CD. The Canonical Keyboard
worker makes it possible for many different physical keyboards
to emulate the CK.

The management of the canonical keyboard is very simple. The
rules are simple because canonical keystrokes have no display
side effects and the Canonical Keyboard Worker maintains no
state which could modify the "meanings" of keys — the
sequence and timing of keystrokes have no effect whatsoever on
the rules by which lexemes are generated.

The rules applied by the Canonical Keyboard Worker are these.

o If the TRANSPARENCY flag is SET, the Canonical Keyboard
Worker forms incoming keyboard data into eight-bit bytes,
which are then placed one at a time inside transparent
{byte-string}) lexemes.

o Otherwise, the Canonical Keyboard Worker recognizes an
i n c o m i n g c a n o n i c a l k e y s t r o k e a n d c o n s t r u c t s t h e
corresponding lexeme.

o The Canonical Keyboard Worker sends each lexeme, as soon
as it's generated, to servers at the upper levels of the
Terminal Service. It does not buffer lexemes.

In all cases, there is a simple one-to-one correspondence
between canonical keys and lexemes: the "A" graphic key
generates the <A> lexeme, the Position Home key generates the
<position home) lexeme, and so forth. See Figure 5.1, "The
Canonical Keyboard", for the key-to-lexeme correspondence.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 5 3

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

5.5.3 Notes to the Implementor

(not part of the architectural specification)

This section provides guidelines and suggestions to BCTS
implementors about how canonical terminal emulation might be
accomplished on physical terminals.

5.5.3.1 Display notes
The implementor of a Canonical Display Worker to support a
par t i cu la r phys ica l te rm ina l w i l l dec ide wh ich c lasses
(scroll, page, or both) of canonical display to support, and
how to map the canonical display onto the terminal's physical
d i s p l a y. I n g e n e r a l , i m p l e m e n t o r s w i l l f o l l o w t h e s e
gu ide l ines .
o For any terminal at least scroll CD capabilities must be

implemented.
o The Canonical Display Worker must accept and understand

all of the standard lexemes. Those lexemes which are
d e fi n e d t o h a v e n o e f f e c t s o n t h e C D (e . g .
Application function)) may be discarded.

o The implementor should at tempt to provide a l l CD
c a p a b i l i t i e s f o r a n y t e r m i n a l . H o w e v e r, s o m e C D
capabi l i t ies may not be reasonably or sat is factor i ly
emulated for a particular physical display. (Examples of
features that may not be reasonable to emulate on some
terminals are the "Insert Character" operation and the
"blinking" attribute -- imagine these features emulated on
an ASR-33.) If this situation occurs, those features will
not be available to a program using the canonical display;
that information wil l be available to programs. The
evaluation of "reasonable" and "satisfactory" will be left
to the judgment of the implementor.

o Because of windowing considerations it's almost never
useful to provide a scroll CD if the PD is capable of
page.. . but i t 's mandatory anyway for those cases
(special for the future but ubiquitous now) where one CD =
one window = one process.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) p a S 8 5 4

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 > 1 g 3 2

5.5.3.2 Keyboard notes

Themapping of physical keystrokes to canonical keystrokes is
an implementation issue for each physical terminal and can not
be formally specified here. In general, however, implementors
will follow these guidelines.
o All physical keys should map onto canonical keys.

o Physical keys that are labeled the same as canonical keys,
e . g . " TA B " o r " P F 1 " , s h o u l d h a v e t h e o b v i o u s
co r respondence t o canon i ca l keys . O the rw i se , t he
implementor should choose reasonable mappings. For
example, the key labeled "clear field" on a physical
terminal might be chosen to correspond to the "erase to
end of line" canonical key.

o Physical keys which are not otherwise useful should map
onto the set of "undefined" canonical keys. For example,
keys labeled "AUX ON" or "PRINT" might become "undefined"
keys.

o Physical keys whose actions are invisible to the CK worker
cannot and must not be used as canonical keys. For
example, a "HOME" physical key whose action is strictly
"local" (it moves the cursor but the CK Worker is not
notified that the keystroke occurred) cannot be used as a
CK key.

o The terminal operator must be able to generate all CK
keystrokes, excluding the class of undefined keystrokes.If necessary, a standard keystroke sequence will be
defined by which the terminal user can mimic any missing
canonical key.

o The CK is assumed to have keys that generate <NL>, <LF>,
g"d <CR> lexemes. Most physical keyboards have only aRETURN and a LINE FEED key, and it is customary for the
RETURN key to invoke both "carriage return" and "new line"
semantics (though not at the same time). If necessary, a
standard protocol will be defined by which the terminal
user can mimic all three canonical keys using only two
physical keys.

o If the physical terminal echoes all keystrokes itself, and
this feature cannot be managed or disabled, the HARDWARE
ECHO flag should be SET. The entity which would normally
handle echoing (either part of the Terminal Service, or a
client program itself) will be able to find out about this
condit ion and change its behavior accordingly. Such
te rm ina ls won ' t be ve ry sa t i s fac to ry as canon ica l
terminals; we can't help much.

T h e C a n o n i c a l T e r m i n a l S e r v e r (L e v e l 1) P a g e 5 5

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

6 The Window Service (Level 2)

[This section should be viewed as a placeholder for some ideas about
windows rather than as a formal statement. We have not studied this
area much yet.]

The Window Service manages the association of many logical terminals,
in use by one process or by several different processes, and a single
canonical terminal. The terminal user can thus watch and control
several services at once from his terminal.
The Window Service provides a "switchboard" that allows:

o many logical displays to be associated with a single canonical
display, and

o lexemes from the canonical keyboard to be associated with one of
many logical keyboards.

In the special case of "one process to one terminal" (and "one logical
terminal to one canonical terminal") connection, the switchboard
function of the Window Service is trivial -- the routing is automatic.
In the general case, wherein several independent processes share access
to one physical terminal, the server must

o route each incoming lexeme from the canonical keyboard to the
correct process input stream, and

o handle each display request from a process's output stream subject
to any constraints imposed by the sharing of the display.

In the most general case, each process output stream will map onto a
region of the display called a window.
We (deliberately) haven't spent much time thinking about the Window
Service. Window Services are not required in order to satisfy any of
the basic canonical terminal requirements (see PE-TI-847), so we have
left this piece for last. However, we are so sure that a Window
Service will be a big part of PRIME'S terminal service offering in the
future tha^we have made sure to reserve its place in the architecture.

This section of the document will outline a set of services and a set
of interfaces to those services which we currently believe should be
included in a Window Server. However, the reader should view this as a
first pass at a set of requirements for such a service, and not as a
formal statement of services to be provided.

T h e W i n d o w S e r v i c e (L e v e l 2) P a g e 56

Terminal Service Architecture March 5, 1982

Process 1

LIO
(stream A)

Process 2

LIO
(stream B)

+ +
! Process 3 !
+ +

L I O L I O
(stream C) (stream D)

I Logical J
! Services ! Logical

Services
i Logical1 Services
| kJCI V J. I.J CO I

+ +

! Logical !
i Services '

Window Service

Display/Keyboard Switchboard

+
! B a s i c
! Canonical Terminal
I S e r v i c e
+

i
i

Physical Terminal

Window

■+-+■
Window ! Window

D
<-- Display

<-- Keyboard

terminal operator

Figure 6.1: Many Processes; 1 Physical Display

The Window Service (Level 2) Page 57

Terminal Service Architecture March 5, 1982

6.1 Services

6.1.1 Many-to-one mapping

Each program to Terminal Service stream corresponds to one
logical terminal. The Window Service allows one or many logical
terminals to be associated with a single canonical terminal.
These logical terminals may belong to a single process, or to
some number of processes.

6.1.2 Windows for logical displays

Each logical terminal has a logical display. A logical display
is seen on the canonical display only through a window maintained
by the Window Service. A window is a two dimensional region ofthe canonical display, of arbitrary size and shape. Each program
display request is examined by the Window Service; it will cause
changes to the canonical display only if the part of the logical
display affected by the display request is currently windowedonto the canonical display.

The dimensions of the logical display need have no relationship
to the dimensions either of the canonical terminal's display or
of the window through which the logical display is viewed. The
size of the logical display will be chosen for the convenience of
the program; the mapping of the logical display to the canonical
display, through a window, is for the convenience of the terminaluser.

At any time, some (perhaps all) of the logical displays will be
windowed onto the canonical display, while some (perhaps none)
will not be seen at all. Logical displays can exist without
windows.

6.1.3 Active logical keyboard
Each logical terminal has a logical keyboard. Through the Window
Service, the canonical keyboard is mapped onto a single logical
keyboard at any time. The terminal user absolutely controls this
mapping. At any time he can request that his input be switchedfrom the current ly act ive logical keyboard to the logical
keyboard of any other logical terminal associated with the
canonical terminal.

The Window Service (Level 2) Page 58

Terminal Service Architecture March 5, 1982

6.1.4 Operations on window:

The terminal user will be able to:

o create a window to be associated with a logical terminal,
makin§ that logical display visible on the canonical display;

0 <jglete a window, making the logical display formerly seen
through that window now disappear from the canonical display;

o move a window to a different region of the canonical display;
o expand a window, making a larger piece of the logical display

v i s i b l e t h r o u g h i t ; a n y
o shrink a window, making a smaller piece of the logical

display visible through it.
The terminal user requests these services at will through the
Human Interface Service.

6.1.5 Window "scrolling"

If the logical display is larger than the window currently
allocated to it, the terminal user will be able to view only a
portion of the logical display at any time. The terminal user
can change this visible portion by a "scrolling" operation, which
appears to move the logical display "behind" the window so that
different sections come into view. The logical display can be so
moved up, down, left, or right.

6.1.6 Window identification

For every window on the canonical display, the terminal user will
be able to readily identify the logical terminal associated with
it. (This might be done by having a constant label on each
window, or by having the Terminal Service display a window's
identification when explicitly requested to do so.)

6.1.7 Selecting a logical keyboard
The terminal user can specify which logical
receive his keyboard input, by pointing to
display, or by supplying the name of a logical
latter method is required if the desired logical terminal isn't
currently windowed onto the canonical display.

keyboard is to
a window on the
t e r m i n a l . T h e

The Window Service (Level 2) Page 59

Terminal Service Architecture March 5, 1932

6.1.8 Overlaying windows

A new window can be created, or an old one moved, so that it
partially or completely obscures another window. The obscuredwindow will again become completely visible when the overlapping
window is moved, or if the obscured window is itself moved.

6.1.9 Synchronous/asynchronous update
The terminal user can specify either synchronous or asynchronous
display behavior for each logical display, defined as follows.
o Synchronous: display requests received for this stream will

be performed on the logical display only if the affected part
of the logical display is currently windowed. If the request
would change an unseen part of the logical display, or if the
logical display isn't currently windowed at all, the display
request (and all subsequent ones) would be blocked until the
affected part of the logical display is_ visible on the
canonical display. The terminal user should be informed that
this blocking has happened.

o Asynchronous: d isplay requests wi l l change the logical
display whether it is windowed or not. The terminal userwill always be able to see the "current" state of the logical
display, but any preceding states will have been seen only if
they occurred while that part of the logical display was
windowed.

A logical display used to display a time-of-day clock would
probably be set up with asynchronous behavior, while a compiler
producing error messages might warrant a synchronous display.

Perhaps the program should be able to makeaddition to or instead of the terminal user. th i s se lec t ion in

6.1.10 Scroll "pad" for page CD

In the
s ing le-1
d i s p l a y,
l o g i c a l
is calle
user (wi
a logica
the curr
fi t . T h
view pre
serv ice)

special case
ine structure)
the Window

display images
d a pad; it
thin limits im
1 display is
ent line and a
e terminal u
vious display

where a
is bei

Service
for each

s size wi
posed by
al located
s many pr
ser can s
images at

scroll logical di
ng used with a
wi l l mainta in a
such logical dis

11 be configurabl
the Terminal Serv
a window, the wi

evious lines of t
croll the pad beh

will (see the "w

splay (
page
log o

Play.
e by th
ice) .
ndow wi
he pad
ind the
indow

whic
can

f pr
Thi

e te
When
11 d

as
win

scro

h is a
onica l
evious
s log
rminal

such
isp lay

w i l l
dow to
l l i n g "

The Window Service (Level 2) Page 60

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

No such log of previous display images will be associated with
any page logical display. (Such a service could be provided
outside the Terminal Service, if desired.)

6.2 Window interfaces

This section provides an overview of the Window Service's interfaces
to the rest of the Terminal Service.

6.2.1 Display/keyboard interfaces

The Window Service reads display requests from all Logical
Terminal Servers, as they are available. Each display lexeme is
screened and translated into a set of lexemes which would have
the appropriate effects on the appropriate window; those lexemes
will be forwarded to the Canonical Terminal Server. For example,
an "erase display" request for a logical display must be
translated into lexemes which will cause the erasure of that part
of the canonical display within window boundaries for that
logical display (possibly none).

The Window Service reads keyboard lexemes from the Canonical
Terminal Server, and routes them to the Logical Terminal Server
whose logical keyboard is currently designated the "active" one.
There is always an active logical keyboard. The Window Service
simply copies input lexemes to the appropriate output path; no
translation is required.
The lexeme vocabulary used by the Window Service is the same as
that understood by the Canonical Terminal Server. The Window
Service must know exactly what effect each lexeme would have on
the canonical display, and be prepared to duplicate those
effects, subject to window constraints.
Neither the Logical Terminal Server nor the Canonical Terminal
Server is aware of the existence of the Window Service.

6.2.2 Managing windows

The terminal user will use a set of interfaces defined by the
Human Interface Service to create, delete, move, and change
windows, to switch his input to a different logical keyboard, and
to examine any relevant information (names, window allocation)
about the set of logical terminals associated with his terminal.

Although most programs will be unaware of the existence of
windows, we believe that those programs which are prepared to
take advantage of the window mechanism (the EMACS screen editor
is a good example) should be able to recommend window size and
placement on the canonical display. There will have to be some
way to resolve conflicts between programs and terminal users as

T h e W i n d o w S e r v i c e (L e v e l 2) P a g e 6 1

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 3 2

to which windows belong where.

6.3 Other work on Windows

Windows are obviously an idea whose time is coming fast at Prime.
In the last year there have been several efforts to specify window
operation within the context of specific applications. In addition,
there are several ongoing prototyping efforts which have built
simple implementations of window mechanisms. The following is a
partial list of projects (with documentation, where available) which
have thought or are thinking about windows.

o The Unicorn workstation architecture, described in PE-TI-917,
"Unicorn Phase I Report", by Jay Goldman, Hugo Strubbe, Doug
Voorhies, and Dick Wolfson. A simple implementation, called
Minicorn, of the Unicorn's window mechanism is described in
PE-TI-978, "Be fr iendly to the users: try screen-oriented
output!", by Hugh Strubbe.

o The beg inn ings o f a p roposed O ffice Au tomat ion (3 .X)
architecture, described in PE-TI-981, "OAS 3.X Architecture TeamInterim Report", by Lee Scheffler for the OAS 3.X Architecture
Team.

o The Virtual Terminal Project (Research Department) has built a
prototype window mechanism, described in PE-TI-944, "Windowswith Text or Menus for Three Glass TTY's", by Peter Stein, and
PE-TI-945, "A Virtual Terminal System for Fox, Beehive, and HDS
Terminals", by Ilya Gertner and Peter Stein.

o The CASE requirements specification includes some terminal user
requirements for window operat ion; see PE-TI-871 "CASE
Requirements Specification", by the CASE Development Team.

o The EMACS screen editor is a single process which is capable of
d iv id ing the phys ica l d isp lay in to severa l i ndependent l y
operating windows.

T h e W i n d o w S e r v i c e (L e v e l 2) P a a e 6 P

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

7 The Logical Terminal Server (Level 3)

Level 3 is the "top" level of the Terminal Service. This level is the
closest to the application program, and farthest from the physical
terminal. The server at this level is called a the Logical Terminal
jerver, or LTS; it provides a set of value-added services on top ofthe standard display and keyboard services available from the server at
level 1.

The Logical Terminal Server acts as a filter operating upon the input
and output streams which connect the program to the canonical terminal.
A client of the LTS invokes output services by sending it standard
display lexemes; the LTS will apply some set of transformations to
these lexemes, and send the lexemes so produced onward to lower levels
5^£he Terminal Service. The LTS provides input services by applying adifferent set of transformations to the lexemes it receives from the
rest of the Terminal Service, sending the output of that transformation
onward to the program. The filtering job done by the LTS may be quite
simple (only a few lexemes are altered) or quite complex (incoming and
outgoing streams differ radically).
To the client, the LTS appears to modify the behavior of the canonical
terminal. It can add a service which the CT doesn't provide directly
(aslong as the LTS can combine existing CT primitives to get the
desired effect). It can appear to change the way in which CT services
operate, by slightly changing the set of lexemes sent to or received
from the Canonical Terminal Server. This apparently-changed behavior
of the CT results in the appearance of what we call a logical terminal.

There are many possible services that can be provided by a level 3
server. The set of services that we will provide is intended to
satisfy the requirements stated in PE-TI-844, "Canonical Terminal
Requirements". We have been calling this set the "General Purpose
Interactive Terminal Services" or GPITS, for short. The name is
subject to change without notice! An overview of the services provided
within GPITS will be presented later in this section.

GPITS will be the standard terminal support environment available to
software builders using PRIME computers. Software builders can replace
GPITS by either an extended version of GPITS which contains additional
services, or by a completely new package of services intended to
provide the appearance of a different terminal support environment and
a different logical terminal. Different level 3 servers could supply
text editing services (including movement of text blocks within the
display) or forms mode services (including definition of protected
fields). This possibility is discussed in a later section.

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) P a g e 6 3

Terminal Service Architecture March 5, 1982

7.1 Invoking the right Level 3 service package

[At LIO open? Specified by the program?]

7.2 The GPITS Services

The primary source for the definition of GPITS services has been the
set of requirements presented in the Canonical Terminal Requirements
document. We have added a few things (e.g. the "phantom column"
service) which we feel are valuable additions to a general terminal
service package.

This section provides only an overview of the services GPITS will
provide. Detai led specificat ions of al l services, including the
interactions among them and the management interfaces used to invoke
and control them, will be developed for a separate document, the
Terminal Service Functional Specification.

7.2.1 Discard Output
The terminal user can request that the Terminal Service discard
all output lexemes. When this service is in effect, all output
lexemes from the program and all echoed lexemes generated within
GPITS will be discarded within GPITS, without being sent to lower
levels of the Terminal Service.

Discarding of output normally happens without the knowledge of
the program, and is strictly for the convenience of the terminal
user. However, a program will be able to request that particular
output messages (important prompts or error messages) be exemptfrom this service, so that they may be displayed even when the
terminal user has requested discarding.

This service is normally turned on and off from the keyboard by
the <control-0) lexeme. The program or terminal user can change
the lexeme which invokes this service through the Parameter
Management Service.

7.2.2 Suspend/Resume Output
The terminal user can request that the Terminal Service suspend
or resume processing of output lexemes. When output is
suspended, GPITS continues to accept lexemes from the program but
will neither operate on them nor send them on to other levels of
the Terminal Service. When output is resumed, GPITS will resume
normal output processing from the point at which it was
suspended. Programs will not be able to override the terminal
user's suspend and resume requests.

The Logical Terminal Server (Level 3)
Page 64

cr CD r- o OQ H
- o 03 H CD *-$ 3 H
-

CS 03 H
1

CO CD -s < CD r- CD < CD uo no 0) OQ CD ON

0)
C

f

C
U

Q
3

H

->
]

cf
 c

r
h-

 c
f

cr
Cf

 H
*

01
 C

f
CD

ro
CD

01
 O

 C
D

O

O

i—
i

cs
C

 C
S

 0
3

J
r

cs
 o

 C
O

c
f

o

i

c
f

c

f
3

O

•3

03

H
-

C

f
C

 ^
 3

03

H
-O

C

D
c

f
CS

 H
-

fl)
CS

 *
<

 C
S

 C
S

 3
c

f
H

-O
Q

O
Q

 0
1

 C
f

CD
cf

C

C

01
H

«
S

i
•

-*

C

S
CD

CS
 Q

]
Cf

 O
c

f
03

 C
L

-J
O

 c
f

O
 C

S
H

-
a*

 c
d

C
f

cf

i—

cf
H

-
CD

CD
 C

D
d

 c
r

oi
01

~s
CD

cr
 c

f
cd

 c
d

0)
 3

C
D

H

«

"1
C

f

H
-

X
i

o

<
c

f

3
~

i
3

H-
 H

-
CD

 C
D

01
 0

1
cs

 o
C

S

C
u

<

td

<

cd
c

f
H

-T
D

H

-

O
H«

 3
cu

 ~
s

3
 p

r
o

 c
fl)

O

C
D

X

)
cs

 3
03

 T
D

 c
f

Cu
 T

cr
• «

^

C
D

O

CD
H

-

T

<
H

-

I
0)

 3
 c

r
h-

03
Cf

 0
1

 <
<

 C
U

O
C

D

C
D

"
J

0)
 0

1
03

 .
—

i
H-

 •
-•}

 C
f

3
 O

C
S

C

D
03

 O
-*

 0
3

Xi
 c

s
t?

3
TD

 •
-*)

C
t5

0
H

-
H-

 H
-

cr
 h

 c
s

3
 0

Q
cd

 ^
:

03
 3

O
Q

 C
O

H
tD

-s
C

O

O
a*

 0
3

~
0

C

J

id
 c

r
O

 0
1

 0
3

Cf

H-
>0

fl)

3

s:
 c

d
3

l
H

'
CD

I
•

 0
1

CD
 0

)
CD

C

3

3

c
f

3
 C

S
c

f
<

 H
-

 r
—

i
03

 C
D

H
-C

t

T
]

cs
~s

 o
 »

-<
i

H1
 C

f
O

1

o

CD
 H

-
3

H

-

-5
x

 o
3

cs
 c

s
CD

 C
S

CD
 <

 O
3

 o
i

3
Q

C

CD
 •

C
f

O

-

fl)

•

0
)

H

»
0)

<—
»c

f

2:

t-»
CS

H-
 C

D
 O

C
u

r
t

O

£
0)

H
 C

J
 0

)
 H

*
03

 O
cr

 o
i

~s
 3

cs
 c

r
fl)

 >
••

 C
D

 O
Q

S
rt

rt

2
:0

»

-3
01

 ^
-x

cu
 d

 c
f

a)
 H

CD

O

>
*"

*
O

 H
C

fT
D

TD

O

»-
3

~<
i

cf
 O

 /
\

H
^»

 s
-

0
)

0

cr

h-
o

cr

sr
 w

CD
 0

 C
D

 c
r

cs
 0

cd
 c

 c
r

CD
 "

S
 0

1
0

cr

cr
 *

-s
 0

 c
r

cd
 "

J
 c

r
3

H
-

3

T

fD

CD
 c

<
 T

 T
 M

(I)
a

c

=
01

 c
f

CD
T

O
W

H"
 C

D
ro

T

O

C
D

O
 C

D
03

 0
1

01
 C

U
 ~

s
CD

 O
h-

 3
 3

 0
1

 d
 s

:
TD

 T
D

3
 O

 C
D

H
*

O

cf

3
03

3

3

O
Q

 C
D

O
 C

D
 X

i
cf

 c
r

0
 o

i
h«

 -
j

ui
O

cf

-J

O
 C

 T
D

H-
 C

D
 -

.
CD

 c
f

U
l

C

CD

cf

cf
CD

 C
f

M
 Z

,
01

 0
3

01
C

D

H
D

O

C

D
")

(!
)

D

)
3

cf

03

3
 0

1
 0

1
O

 C
D

O
Q

 -
S

 "
J

 C
D

01

cf

cf
S

O

T
D

O

Q
03

h-
»

 0
1

 H
»

 T
1

C

U
TD

0
1

O

Q
0)

 0
)

cf
 -

s
TD

cr
 3

 0
 -

s
TD

 c
r

Zj
CD

O
Q

 C
O

 O
 C

D
O

 0
3

O
 *

<
 h

-1
 M

 <
T

D

T
D

CD
 c

f
H«

M

H«

£
H-

 3
0)

H
-

M

3

CD
 C

D
 h

*
CS

 c
f

H*
 C

D
 3

>-
*i

0
3

H

«
03

 0
3

 C
D

CD
 3

3

O
O

H

-
OQ

C
f

3

1

H

-
3

O

l
cf

 c
r

0
~s

 c
u

01
T

D

C

H
-O

O

O
Q

 0
1

 C
u

cf

X

0)
C

 O
Q

 "
J

3

3
H

«
cr

 o
)

co
 3

C
l

CD
0

3

<

H
-

X
i

03

03
 0

3
 0

1
 H

«
 C

D
fl

)

3
O

cf

cf

C
A

c

f
01

 0
)

ID

H

V

Q
)

CD
 T

D
 O

l
CO

H
H

-
r

f
N

03
C

T

C
D

03

H
«

cd
 0

 c
r

H
"

0)
s

.

,—
1

aT

fl>
CD

O
 O

 C
D

TD
•-

1

»-
^

01

s:

cf

0
F

?

O
"t

3

c
f

no
 C

•
0

 ~
s

~S
 T

D
Cf

 C
D

C
D

M

C

D

c

aw

H
-

£
 C

CD
 »

-i>
 3

-•)
 c

H
-

0)
 0

3
 0

3
O

Q

<
<

 0
3

C
D

c

f

Z
T

 C
D

H
»

C

D

H
1

O

c
f

*<

T
"J

O

03
~J

 C
D

 3
 C

"i
 h

-
H

-O
Q

~*

cr

h-
•

cf

0

h-

a.

m

TD
cr

 0
 0

1
CD

 0
)

>-
*i

fl)
0)

 T
 C

U
 0

1
0)

 D
O

 C
D

3
 H

«
 C

D
 H

"
rt

 h
j

0
 3

 h
-

0
3

CD
JC

J
 3

=

-J
3

C

D
3

CD
CD

H
«

0

1

M
fl)

D
 O

Q
 w

 c
r

O

c
f

0
)

"J

C

*<
H

4
C

D

O

"S
•

C
S

0

1
*■$

a

H

T
D

C

D
~s

"J

<
C

D

i-
»

H
*

C
f

03

3

l-J
-

O
03

 0
3

 H
-

D
H.

 v
<

 C
 H

1
I-

"
CU

 c
f

H-
0

3

H
-

3
 S

CD
 3

 "
J

0)
 0

1
O

\r-
>

 O
 N

 O
01

01

03

03

H
-

cr
 0

C
f

O

3

CD
 H

-
~

S

C
D

3

C
•

cf

C

D

T
.£

>
 T

D
 £

 C
D

 v
<

 <
3

 D
H«

 C
D

 C
D

01
 C

 C
D

01
 H

1
0

01

0

CL
 t

->
.

cs
H

-

3
c:

!-■

3"

C
U

-.

Q
)

O

C
D

cf

01
=

 I
—

•
3:

cr

c

-j

c
f

<

O

03
03

0
3

(D

H

>
TD

C
fT

D
s.

03

03

3

3
CD

CC
 C

D
 •"
♦

>
H1

*-•
«<

:
cs

 0
3

 h
1

C
D

^^

C
 T

>
 0

)
cr

 C
3

3

CD

0)

O
 C

D
c

f
O

-

H

-<
H

«
H

«

01

TD

03
01

Cf
 -

S
 T

D
CD

cf

cf

cr
0

3

O
Q

M

3*

Hi
j

O
 •

-«
}

CD
 C

D
O

s:

cf

*<
:

c
f

cs
 c

f
01

 c
r

(D
O

 T
D

O
 C

D
O

Q

C
D

I—

1
cd

 c
f

cr
*<

 O
Q

 3
*

03
 O

Q
 H

1
H-

1
CD

S
O

Q

H
03

C
D

O

<

<
0)

<
 0

 fl
>

 c
r

C
D

H

-

C
D

H
-

H-
 "

S
 H

'
CD

 T
H-

1
3

C

f

C
C

l

0
3

C
D

C

D
TD

0
1

T

D

3
C

J

3
H1

 fl
)

CD
X

CD

cf

H*
 fl

)
CD

 c
r

cf
c

f
<<

~S

cf
TD

-
i

O
 T

D
 0

1
 fl

)
cd

 r
-

i-1

3

01
cf

O

ZT

cd
 c

r
3

 C
D

 T
D

 1
t—

>-
.

-
cr

 c
r

0
H

>
3

 c
r

oq
 c

f
cs

01
 H

-
CD

 C
D

a. 1
—

1
C

f

C

C
D

CD
O

cd
 <

<:
 s

r
CS

CD
 <

<
 C

D
 H

-
H

1
CJ

"J
T

D

H
«

CD
1—

'
Cf

 .
Q

X

c
f

c
f

c
f

0

1

0
c

f
0

1

O
<<:

CD
C

D

O
03

<

CO
 C

D
 =

 C
CD

 c
r

cr
cr

 0
1

h-
 a

i
CD

>■
*>

 H
-

0
 3

>̂
0

3

3
O

Q
 C

D
 C

U
C

D

X

C
D

3
CD

CD
CD

 H
'

O
 C

D
~S

H
«

O

h-

»

5:
fl

)

>
H

(D

an
-T

D

cf
"J

 C
D

 C
 0

3
CD

~
j

N
 0

)
 S

>
X

03

03

S

J

-j
 s

:
cf

3

^

03
03

O

<

3

H
«

cf

01
 T

D
Cf

 C
D

 H
-'

s:
CD

 H
-1

 0
1

H«
 C

D
"S

*<
TD

OQ
H'

 C
D

 C
f

03
-J

<
c

d

c
r

3
"

C

U

«

H
3

01
cf

cf

-

f-1
CD

0

01

cr
O

Q
 O

0)
"i

0

01

<<

H
*

C
f

H

"
cf

 T
D

cr
 s

r
cf

~1
 0

3
03

 a
.

CD
CD

 O
H

*
3

•-•
>

0
3

(D

C

U

c
f

cr
>o

CD
 H

«
 0

O
 <

<
=

CD
•

 s
:

/\
 3

3
 C

D
c

H
»

~

J

C
f

cr
 c

 ~
s

 h
-

3
 c

r
CD

 H
-

3
-

.

H
j

cr
 0

 0
3

CD
 0

3
CD

cs
 c

f
cd

 c
r

3
 3

 0
3

 O
 C

D
O

 O
Q

H
«

H*

O

C
~i

 0
3

03
 sr

 C
D

CD
O

*

h-
TD

cf

TD
 O

Q
O

O

0

3

01
03

 H
«

c
f

H*
 fl

)
cs

TD
C

D

C
S

H

»

-o
C

O

cf
 0

 s
;

cd
cr

cf

T
D

cf

3
cr

CD
T

0

)

0
3

T

"S
3

CD

3

cr
 T

3
cr

~t
 C

D
CD

 O
Q

T
c

 2
:

0
 c

d
-s

m
^

a*

0

TD
 C

O
Cf

 O
 0

1
C

D

H
(0

H
-

O

3

C
u

O
U

H

'T

T
0)

O

*

C
D

O

Q
O

 C
D

•
sr

 C
D

•-9
3

03

3
 I

-1
 C

u
C

CD
 C

S
 3

c
f

•"
•)

H

-

"$
01

 -
1

O

O
TD

 C
O

"J
<

1

sC
 M

)
OQ

1

at
)

h

CD
0

3

0
3

CD
 <

CD
 C

-$
O

 c
r

0

JO
H

«
cr

O
 0

3
CS

01
H1

 H
 C

u
 3

H
'

Cu

cf
-0

H

-
?r

v

cf

O
£

 £
 O

Q
 f

l)
h«

 o
)

cr
 0

O

O
H

«
O

Q

£
H

c

f
C

D

•

0
cr

 c
c

f
H

«

C
D

i-

1
C

S

H
-3

y

">
 C

D
T

H

-
H

 -
j

H-
 C

f
cr

M

fl)

-
CD

 O
 0

1
 fl

)
0)

cr
 c

d
03

 »
-<

CO
 0

3
c

f

c
f

3
 T

D
CD

H
1

H

»

C
O

0
3

S

3

0
3

CU
 ^

s
3

H

"
cr

 »
-3

td
HO

(D

H
«

H
 0

1
CD

cr
 h

-
h-

 c
r c

O
 c

f
-0

O
 "

*
~i

CS
CD

 C
 T

c
f

i-
«

03

M
03

C

D

C
f

•X
i

03
cr

 0
 -

 <
ex

03
 0

 ~
t

sr
 c

d
CD

 C
a

 h
-

01
 <

<
1—

1
"J

C
D

0

3

H
-

H
-

cf
 -

S
 <

 C
D

 X
)

"J

H
-

T3

3
Cf

 (
A

03

TD
H

H
1

03
Cf

 H
«

 O
H-

3

C

3

H
M

 C
D

H-

C
01

C
D

*1

CO
 (D

3
CD

 •"
•>

 C
D

H
«

O
O

C

D
H«

 H
"

H

01
•—

 0
1

CD
 0

3
"S

O

CD
03

Cl

a.
O

C

f

C
D

03

CO
TD

3

H
-

<
 o

q
 s

:
Z,

 C
D

c
f

c
r

c

f
D

C

T

c
f

c

f
H

»
Cf

 C
D

Cf
 N

H*

1

H«
H

-
3

CD
h1

 c
f

cr
 c

f
0)

O
 C

D
 H

-
3-

 c
d

cs
 c

r
H

-

O
3

-
3

CD
O

03

C

f
I—

'm
~S

CD
 O

 C
D

 0
»-•

CD
 T

 0
1

 C
D

Cu
O

Q
 C

D
3

«-

*
CD

 C
U

03

a.
CD

3

3*

H
«0

1

CD 3 H
-

3 0) CO CD < H
-

O CD > O cr H
-

C
f

CD O c
f C CD 03 o U
l

CO ro

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

o A mechanism to allow the program to correlate the occurrence
of the attention with a position in the input stream. (For
instance to allow lexemes typed before the attention to be
flushed or otherwise treated differently.)

Programs will be able to enable and disable any and all GPITS
a t ten t i ons .

The attention service by default recognizes one attention. The
default attention is invoked by <control-P> and will cause a
process's QUIT$ on_unit to be signalled.
The invoked on-unit will be supplied with a terminal identifier
and an attention identifier. [Possibly other information.]

7.2.5 Data Forwarding
The data forwarding service allows a program to recommend how the
Terminal Service is to block lexemes for transmission over the
medium between GPITS and the program. The maximum program
responsiveness, every lexeme transmitted to the program as soonas possible, carries the highest transmission cost. The minimum
program responsiveness, lexemes grouped together into blocks atthe server's discretion, carries the lowest transmission cost.
By appropriate use of the mechanism that controls the blocking,
programs may trade-off responsiveness for cost.
The default behavior of the data forwarding service is to block
lexemes into "lines" (strings of lexemes delimited by a <new
line) lexeme). Programs may set up different blocking rules by
specifying other lexemes than <new line) to be used as
triggers". A set of trigger lexemes may be designated throughthe Parameter Management Service.

GPITS may at its discretion, and for any reason, transmit a block
of lexemes anytime before a trigger is encountered in the input.
The only service guaranteed by data forwarding is that no delay
will occur after GPITS encounters a trigger.

O O

7.2.6 Echo

T!?e uC?u TViCe all0WS a Pro^am to specify the style of echoingwhich the Terminal Service is to perform on its behalf. Three
styles are available.
o Immediate echoing. This is what PRIMOS does today when "full

be lowX) requested. (But see a lso "Lexeme Mapping" ,

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) DJ r a g e 56

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 3 2

o No echoing at all. This is what PRIMOS does today when "half
d u p l e x " h a s b e e n r e q u e s t e d . T h e p r o g r a m a s s u m e s
responsibility for any echoing.

o Deferred echoing. Echoing is performed by the Terminal
Service, but can be controlled by the program. in a way that
allows orderly formatting of type-ahead. GPITS will suspend
echoing when it encounters a "suspender" lexeme, and will
resume echoing on command (via the management interface) from
the program. The program may designate a set of lexemes to
be used as suspenders — this is normally but not necessarily
the same as the set of triggers.

A related service (see Lexeme Mapping) will allow programs to
specify a lexeme or string of lexemes to be used when any lexeme
is echoed.

Most programs will request immediate echoing, and continue (as
today) to have the Terminal Service handle all echoing.
Deferred echoing also makes the Terminal Service handle the work
of^echoing, but gives the program some control over when and howit's done. It can be used to create the appearance that
characters are echoed as they are read by a program, instead of
being echoed as they are typed by the terminal user. In a simple
example, the <new line) lexeme will be both a suspender and a
tr igger lexeme. Af ter processing a <newl ine>, GPITS wi l l
suspend echoing of input lexemes until the program tells it toresume echoing. This gives the program a chance to write any
output (prompts, etc.) to the display before the typed-ahead
characters are echoed. This allows orderly formatting of input
and output on the display. The program even has a chance to
change the echoing mode (through the management interface) before
echoing is resumed. Using this feature, a program can cause a
password not to be echoed even if it was typed ahead.

7.2.7 Lexeme Mapping
Lexeme mapping allows a program to specify a mapping or
translation from one lexeme to another (or to a string of
lexemes). GPITS provides three points at which this mapping
takes place.

o Lexemes received from the program are translated according to
a display lexeme map before being forwarded to the canonical
d i s p l a y.

o Lexemes received from the canonical keyboard are translated
according to a input lexeme map before being forwarded to the
program.

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) P a g e 5 7

Terminal Service Architecture March 5, 1982

o Lexemes received from the keyboard are translated according
to an echo lexeme map before being echoed to the canonical
d i s p l a y.

The three maps may be manipulated separately by the program,
through the Parameter Management Service. A default mapping of"lexeme in, lexeme out" is provided.

The lexeme mapping service can be used to make a "soft keyboard";
to change the representation of a lexeme when it's echoed (e.g.
to provide control character expansion); or to select ively
remove lexemes from the input stream (by making them map into the
<nil> lexeme).

7.2.8 Local Editing

The local editing service allows the terminal user to examine
and/or make changes in data to be forwarded to the program,
without the involvement of the program. The effects of changes
to the input data are appropriately reflected on the display, in
a manner suitable for the terminal in use (e.g. "back space,
blank, back space" on a CRT, or "backslash, erased characters,
backslash" on a hard copy terminal). GPITS will determine what
is "sui table" .

GPITS provides a simple set of editing services:

o erase (removes the single previous lexeme),

o kill (removes all lexemes not yet forwarded to the program),
a n d '

examine (causes the redisplay
forwarded to the program).

of al l lexemes not yet

The GPITS editing service is intended to handle local editing of
"lines" — strings consisting of graphic characters and format
effectors, terminated by <new line) or the equivalent. Th-
edi t ing service is c losely related to the data forwarding
service: only lexemes which GPITS has not yet forwarded
is, those processed since the previous "trigger"
ed i ted.

t ha t
can be

The undoing of display effects will not be guaranteed for certain
lexemes (e.g. <position>, <erase>). More sophisticated flavors
of local editing may be defined for future versions of GPITS.

The terminal user will normally invoke the three local editing
services through a set of lexemes to be specified. The terminal
user or a program will be able to designate different lexemes
through the Parameter Management Service.

The Logical Terminal Server (Level 3) Page 63

Terminal Service Architecture

7.2.9 Quoting

March 5, 1932

The quoting service allows a terminal user to specify that a
lexeme from the keyboard is to be sent directly to the program
without interpretation by GPITS. It can be used to enter a
lexeme as text that would normally be trapped by GPITS as a
request for the erase, kill, attention, or other service. Such
lexemes will still be subject to the data forwarding, echoing,
and lexeme map services.

7.2.10 Variable Tabs
The variable tab service allows a program to specify a set of
horizontal tab stops which may be different from the fixed
horizontal tab stops used by the canonical display. When this
service is in effect, GPITS will convert a horizontal tab)
lexeme into a lexeme string which will cause the canonical
display to move the active position to the next program-defined
tab stop.

7.2.11 Variable Form Feed Handling

[de le ted]

7.2.12 Line Wrapping

When the line wrapping service is in effect, a graphic character
displayed in the last column of a line will cause an automatic<new line) to be inserted in the output stream. This will
circumvent the normal behavior of the canonical terminal, which
is to discard successive characters after an end-of-line boundary
v i o l a t i o n .

The program or terminal user can turn this service on or off
through the Parameter Management Service.

7.2.13 Phantom Column Line Wrapping

Normal line wrapping generates a <new line) after a graphic
character causes an end-of-line condition. If the next displayed
lexeme is a (real) <new line), the display will appear to have an
"extraneous" blank line.
When the GPITS phantom column service is in effect, the automatic
<new line) will be postponed until the next display lexeme is
received, and will be omitted entirely if that next display
lexeme is a format effector or position lexeme. This will
prevent the extraneous blank lines from appearing when the
displayed text is exactly as "wide" as the logical [?] display.

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) P a g e 5 9

CMoocr.LT>CJCOa>s-34-3O<L)
-P•Hxo$~<u0)o>CDcoroc•He

COf-<H
I

C
L

O>>XX
3<DCO3toa'oroCmt-<D4-3c•H

Cmo3CD•H>
 •

u
 to

<D
 CD

> a
O

 -H>s-
C

 CD
ro

 to

00
CO E-"
cu m

to
TJ

 O
l,

CD
•H

O

CJco
o

 to
Cm

t-

C
O

i-
cu <u

(1)
-p

CJ
C

C
 CO

H
I

•H

O
0

0
4-> 4->

H
CJ

H
I

CD
 10

(X,
tO

 +3
O

c
to

 cu
ro

•H
 -rH

.
X

rH

f—
H

o

• <L> <U
4-3

 to
 CO

 CU
 T7

 i- i_
 TO

 TJ
 CO

E
£

C

ro
c

D
f-<

X
lC

D
O

C
U

C

'H
CO

 J-J O
X

E

«

-<

>

U
-.

X

C

U

X
a)

v_^

4-3
 CD

 CL
 rH

 O
 4-3

 CO
 CO

 -p
i- cu

x

o

r-^

E

-h

ro
-P

U

<
D

-H

C

D

<
D

4

->

b
O

tO
 (L>

1
0

r-l

5

t-

•

O

C

x
 •

ro

>
,

h

g

-o

c
-H

-p
 5

 a>
rH

X
>

<
U

C
D

C
0

O
<

D

E
3

o

rH

E
X

>
C

$
-4

-3
>

>
$

-
C

U

--H
C

U

<

T
J

O

-H

C
^

a
jro

o
-p

 E
 >

E

C
D

C

O

.-i

£

L

E
!<

h
3

 ro
 s-

T
O

4

-3

rH

U

tV
O

C

L

U
O

 03
 CU

tO

a

-H

(D
H

t

U

(1

)
s- oo

. <d
 i. s+3h

 (i)
 n

 a
E

-P
C

D

^-^

O

C
D

P

u

4-3
ro

 to
X

C

O

O

>

T
J

O

C
>

>
C

U

b
O

4-3
 H

 CO
 CD

 C
 rH

 -H
 (XJ

 >H
W

lp

C
o

5

ro

C

O

>
*

E

O

3

'H
^

>
>

C
Q

C

D

O

O

X
>

>

>
5-

C

X
T

J

•
H

^xirn

w
h

cD

coro
CL

 C
 i~

 <D
4

->

C
D

C

X

i

X
»

H

rH

•H
 03

 g
O

rH

C

J

o

C
D

rH

ra

C
D

5

«

H
C

O

J^

rH

.

'H

C

>

C
L

C

O
x e

 j- -p
X

 (U
 -H

 bO
 >

 CO
 -H

 rH
 Cl -H

4-3

C
O

O

(1)

>

5

C

L

O

(D
h^"D

S-

t^.

CO
J-.

«H

C

U

C
J

-H

E
 bfl

CO
 CU

 C
 tO

 CO
 CU

 5
 rH

O

O

-P
•H

C

O

O

C
O

Xi

S-

.C

O
j-

u

ro

ro

H

(D

(-

C

(1
)

o

C
m

C

X-P
o

o

4
-3

o
o

ro
(U

E
c

j'H
/—■s

ro cu
H

rH
C

J
O

C
M

E

C
O

'H
C

to
a» <u Q

 E
H

TO

(1)

S-

<D

u

>

o

<D
E

x:

cu
O

-
,

c
c

0
C

t
t

0
E

X
b

n
s

-
.

C
E

•H

4
-3

X

O

«h

-P

ro

ci)

o

cu

ro
<D

4-3

03

C
U

E
W

tO

V
-rH

j^
C

O
C

)
X

O

X

r-l
>>

 u
 3

 4-3
 cu

 bo
 a.

CU
CU 4-3 4-3

x
 <d

 o
 3

 3
 o

 /\ xi
_

1
<U

H
 *H

 CX
 CT

 ^ X
 CDC0

 <u
^^

i>

W

rH
T

5

>
-p

C
D

C
X

ro
X

-P
X

CO
 <U

 >>
 bO

C
D

0

D

J

-

4
-3

4

-3

4
-3

to
E

 X
 C

C
O

rH

J

-

O

C
U

CD
cu

 cu
 -h

3

C
O

C

X

t0
C

rH
i_

rH
o

E
 x

 xi to
o

 ro
 a) ro

 o
 x>

 o
co

CD
 <D

 CU
>

>
-H

ID

I.

C

D

4
^

C

T
3

4
J

Cm
X

 rH
 C

 tO
J~

 C
 O

 CO
 S

 C
 "D

 H
J-

<
U

«H

-H

ro
o

c

H
4

J
O

J
-S

-
(13

rH

C-,

£
rH

C
-H

H

(!)

n

ro

(H

A

4->
O

S-

M

D
(0

4

-3
C

L
,X

3
-H

O
>

X
l

C
ro

oj

c

^
U

C
O

D

O

V
.X

?

C
O

M
tO

 4-3 «H
C

O

\r*

C
L

E

O
>

>
C

D
4

-3
tO

 CL
 <D

 CL
0

uc>>rar

ox:

CD
CD

3

Xi

3
O

O

C
O

.H
X

)

0JN
/^<

!4->
rH

C)
>

O

O

>

-h

^

ro
•H

•h
 L

 n
 t.

t0

JL

TJ

4->

rH

J-

4-3
>

CD
 faO

-H
 bO

<
u

ro
o

!L
.c

D
to

ro

ro
o

c
S-

E
C

Q
C

m
C

D
4

-3

O
^

-i

0
^

<D
CD

 CO
 bO

 CD
C

U

X

C
D

C

D

"

-H

N

•
0

0
J

-T
3

C

H
X

 Xi -P
 S~

 X
 CU

 b04-3
 .h

 (U
C

 «H
 X)

cu

cucu.H
O

-.4JrH

ow

%
_

0

r—
CO

 CD
 CX-H

rH
x

e
c

u
s

-

a
n

a
)

o

h
•

H
 CO

 3
 CO

4
-3

-h

C
D

E
E

3

X
>

cn
M

O

tO

0?

^

t-P

O

"!

(D

(TV

t.
•

0u
 4-3

 1- O
X

C
u

C
D

O
C

l^
X

X
C

I)

C
D

t—
o

 h
 bo

 a
H

co

«m

h

(h

<u

iiu

roto

CDX
>O4-3

CDX
)ro4-3

x^s
ex

to
CD

3^CU4-3
ro

(UEro
$-

*-
•H

ro
CD

exv_̂
»

4-3

to
T

3
CDO

CO
roCm

to
J-

J-
Q)

cu
4-3

4-3
C

<D
H

I
ro

4-3
S-

C
ro

CD
ex

ECD
rH

bO
rH

ro
ro r—

1
c

X
i

ro
Cm

 CD
t:

O
 -HCm

<M
43

 -H
•

CO
 O

OO
•H

 CD
.

J
 CX

t»-
i—

i

to

CJ)

0
C

 CD
10 4-3

X

4-3
•

H
X

bO
 'H

•H
4-3

5- CO
O

 E-h
CO

rH
 CD

10
 H<

CD
 bO

CU
 s-

CD
 O

-
0

 c
jq

a»

xi

O
•H

.H

>

t-
ro

 4-3
Cm

>>
<D

 Xi
•H

D

O
CD

to
$~

 X
CD

CO
•P

s~
4

J
>

~

c
ro -a

co
 0

ro x)
0

4-3

<D
E-

E a»
•H

to *o
H

1
CX

+
3

cu
O

u CO
E

O

CX
<D

O
 CD

bfl
 O

•H
•H

 CO
J-

CD
to

O
•H

CU
 X

CD
 >>

CO
ro

 c
X

CD

T3
 rH

a>
■Li

O

-P

rH
4-3

T
3

•H
 4-3

rH

C
ro <d

cu
ro ro

E >>
c

 u
•n

E
 E

u
 co

O

u
3

i-
O

 rH
•H

3

r-»
Cm

 CX
-p

0

C
Cm

u
 co

C
X

C

CD
 -H

c

to
•H

O

-H
C

X
X

)
3 ▶

•H
Cm

 4-3
r-^

X

C
O

•H
rH

5 T»
O

 Cm
 CD

Cm
•H

rH
•

H
O

E
0

to

2
O

X

C
D

CO
10

 X
5

X

<D
CO

•p
4-3 CD

C
X

-P
H

0
C

0

C
XrH

>,

C
H

I
cu cu

i-

-H
4J

 CU
I-

fX
•»-) to

cd a) -a
CD

X

-H
>

0

i-

CO
 3

>
0

 5
*_ cd ro

•H

O
i~

t-
JL

CU
 J-

 0
X

 0
0)

CD
C

O

x
4-3 -a

to
Cm

X

•-
>>

•• 4-3
 CO

cu cd a>
4-3

 <D
CV0

CO
 O

 CD
rH

X

^

ro s~
H

bJD
0

)

O
4J

4^

X
 3

HH
•H

X
-

-H

4
-3

C

m
4J

 4J
CU

CO
D

I-

>

•H

O
O

CU
43

O

!m

rH

O
CU

 CD
-o

O

C
D

4-3
 C

I- 4-3
CU

3

-

C
O

3

-H
X

rH
u

 co
•• CD

 -H
CO

 X
4-3

ro
4-3

 CD
 S

CO
 CO

 4-3
O

r-i

c
W

O

I.
t- c

 ro
4-3

S-

•

•P
•H

O

cu
 0

 u
0

 ro
 >,

Z5
•H

ro
 >

 Cm
X!

C

l<D
c

ro

O
4^

■P JL. J„
j-

 to
 c

CO
 5

X
I

ro cu cd
0

 cu
 ai

cu -H
 >>

cCm

XJ
 CO

 CX
5

 U
 bO

$- X
 c

-

4-3

ro
cu

•
D=

 c to
t>-

<«:
1—

i'H

'H

CDbOroa.0
0CD>CDi-CD><DCOCOX•

HEu<Droo•HbOOJCDX

Terminal Service Architecture March 5, 1982

7.4.1 Structures

[Internal structures maintained by GPITS -
spec ified la te r.]

- this section to be

7.4.1.1 Toggles to turn services on/off

[Pagination mode, wrap/truncate mode, phantom column mode,
e c h o m o d e , e t c . J '

7.4.1.2 Tables to map lexemes to service invocations

[Suspend table, attention table, trigger table, output control
table, edit control table, quote table.]

7.4.1.3 Auxiliary program-specified info for servi ces
[Variable tab setting, lexeme maps, attention mode.]

7.4.1.4 Internal structures used by GPITS during services

[Output state, echo state, lexeme buffer(s), data forwarding
b u f f e r .]

7.4.2 Workers

We model the GPITS server as consisting of four cooperating
workers. (Workers or mini-servers are introduced in the Concepts
sec t i on .)

GPITS normally deals with four single-directional streams: a
pair (one input, one output) which convey data between a programand a "logical terminal" (meaning GPITS), and a pair (one from
keyboard, one to display) which convey data between GPITS and the
physical display, via the rest of the Terminal Service.
A prog
output
ac t i ve
the Te
d e fi n e
indepe
termin
e d i t i n
log ica
guaran
the lo

ram may e
stream t

ly mainta
rminal Se
d to link
ndent of
al . For
g, and di
1 display
teed whet
gical dis

lect to
o a log
ins th
r v i ce .
the lo
any s
instan

scard o
from

her or
p lay.

connec
ical te
e pair

This i
gical k
treams
ce, th
utput a
the 1

not the

t only
rminal .
which c
s becau
eyboard
betwee

e defi
How th
ogica l
re is a

a single i
Even whe

onnect GPI
se several
wi th the

n the prog
n i t ions o
e terminal
keyboard.
stream fr

nput o
n this
TS with

GPITS
l o g i c

ram and
f echo
user t

This
om the

is so ,
the r

se rv ic
a l d i

the 1
ing ,
o affe
behav
progr

s ing le
GPITS

est of
es are
splay,
og ica l

l o c a l
ct the
ior is
am to

The Logical Terminal Server (Level 3) Page 71

Terminal Service Architecture March 5, 1932

Lexemes
From / To Program

via Logical I/O
+

H
i Output
i c o n t r o l

i i
i i
i i
i i

V V

Display
Output
Worker

< - :
i
i

+

Deferred | •
E c h o i

+

+ +
■! Keyboard j
! I n p u t !
I W o r k e r j
+ +

+
Lexemes

From / To Lower Levels
of the Terminal Service

Figure 7. 1: Inside the GPITS Level 3 Server

As before, remember that this is not intended as an
design of the GPITS server. The decomposition of GP
workers is just a notational convenience; w<=» found GP
complex to describe as a single unit, and easier to thi
asynchronously operating, independent subunits. We couldhave chosen a different decomposition resulting in mor^
workers with different functions. The only significant
of any description of GPITS will be its specification
operations are to be performed on which lexemes and
order .

There are four workers in GPITS (see Figure 7.1).

i n t e r n a l
ITS into
ITS too
nk of as

eas i l y
or fewer

feature
of what

in what

The Logical Terminal Server (Level 3) Page 72

T e r m i n a l S e r v i c e A r c h i t e c t u r e ^ a r c h 5 > 1 g 8 2

7.4.2.1 The Display Output Worker

This worker provides all services which affect the terminal's
display including variable tabs, the displayed effects of
local editing, and the phantom column service.

The Display Output Worker receives lexemes from the program
output stream and from the internal echo path. It sends
completely-processed lexemes to lower levels of the Terminal
Service, where they wil l act on the "orivate canonical
display" associated with this logical terminal.

This worker follows these rules:
o Lexemes from the echo path only are checked to see if they

are invocations oTTEe Locar~£rJiting service. If so, the
worker makes the appropriate changes to the display by
generating a set of lexemes which will have the desired
effect on the private canonical display.

o Lexemes are run through the appropriate map (there is a
different map for program output and echo paths). For
example, a <control-C> lexeme may be mapped to the
two-lexeme string <"> <C>.

o Miscellaneous display services (l ine wrapping, variable
tab) are applied. Lexemes may be changed or created in
the process.

o Finally, the completely-processed lexeme(s) will be sent
to the rest of the Terminal Service.

This worker keeps track of anything it will need to perform
theguaranteed services. For instance, the current active
position on the private canonical display is needed for line
wrapping; the active position before a <horizontal tab> was
performed may be needed in order to erase that tab.

7.4.2.2 The Output Control Worker

This worker controls the flow of lexemes either from the
keyboard (via the echo path) or from the program to the
display. It follows these rules:
o If the terminal user has invoked the Suspend service

(a.k.a. XOFF), both paths are blocked and nothing goes
through until the user Resumes output.

o If the terminal user has invoked the Discard service,
lexemes from either path are read and thrown away instead
of going to the display.

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) P a g e 7 3

Terminal Service Architecture March 5, 1982

If an end-of-page condition (as defined by the Pagination
service) is in effect, output from the program is held up
until the terminal user gives his O.K. to continue.

Otherwise, in normal operation, this worker just passes
lexemes from either path straight through to the Display
Output Worker.

7.4.2.3 The Deferred Echo Worker
This worker provides the (optional) synchronization of echoing
with program control. It is essentially a valve which starts
and stops the movement of lexemes from the keyboard (via the
Keyboard Input Worker) to the display (via the Output Control
and Display Output Workers). When normal echoing is in
effect, the valve is always open and this worker does nothing
butmove lexemes along the echo path. When deferred echoing
is in effect, this worker closes the valve after a suspend
lexeme has gone through, and reopens it when the program so
requests.

7.4.2.4 The Keyboard Input Worker

This worker processes lexemes received from the lower levels
of the Terminal Serv ice. I t sends complete ly-processed
lexemes to the program, blocked according to data forwarding
considerations, and sends to-be-echoed lexemes to the Display
Output Worker, along the internal echo path.
The worker follows these rules whenever a lexeme ar r i ves

If this is
treated as
invocat ions.

a "quoting" lexeme, the next lexeme will be
text and will not be examined for service

I f t h i s i s an "a t ten t i on " l exeme, the
attention will be signalled for the program,
may be left in the stream so that all input
attention can be easily identified (e.g. to
by the program.

appropriate
The lexeme

before the
be flushed)

If this is an
Suspend, Resume,

"output
Discard

con t ro l "
service) ,Worker must be informed of a change in state.

lexeme (invokes the
the Output Control

If this is a "local edit" lexeme, the appropriate editing
service should be performed on any lexemes not yet

program.forwarded to the

The Logical Terminal Server (Level 3)
Page 74

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 1 9 8 2

o Otherwise, for normal lexemes, the worker will send a copy
of the lexeme to the echo path, apply the lexeme mapping
service, and put the resulting lexeme(s) into a data
forwarding buffer.

o Whenever a "trigger" lexeme has been buffered, the worker
will send all accumulated lexemes to the program.

[The STROMA descriptions of worker algorithms, which were present
in the first draft, have been moved to a separate document.]

7.4.3 Motes to the Implementor

(not part of the architectural specification)

This section provides guidelines and suggestions to Terminal
Service implementors about how the services defined by GPITS
might be provided in various terminal support configurations.

[Might distribute GPITS work among several components for
something small like FALCON ... local editing effects may be
d i f fe ren t fo r d i f fe ren t under ly ing te rmina ls (hardcopy vs .
screen) ...]

T h e L o g i c a l T e r m i n a l S e r v e r (L e v e l 3) P a g e 7 5

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 3 2

8 The Parameter Management Service

[This section is very preliminary and will be filled in later.]

The Parameter Mangement Service provide programs with two services:
o An ability to manipulate parameters within a logical terminal,

i.e., within a stream, controlling the behaviour of that logical
te rm ina l .

o Logical Terminal structure independence, i.e., parameters appear to
belong to the logical terminal as a whole (a program need not knowwhat components of the Terminal Service actually use those
parameters.

Parameters have special characteristics. These are:

o Parameters and structures are not the same things. Structures are
implementation dependent, parameters are architectural concepts.
Structures will be visible or interesting only within the Terminal
Service; parameters are externally visible.

o Parameters have unique names, independent of the implementation of
terminal service.

o Each parameter has an owner. Only the owner of a parameter may
manipulate the value of a parameter.

8.1 The Parameter Management Servers

Early on, we real ized that parameters were associated with
particular portions of the terminal service. For example if a
parameter exists that defines the size of a window for a stream
that parameter is most likely associated with the window services!

This type of association argued in favor of particular service
owning particular parameters. At the same time, we felt that the
program should not have to know that parameters were associated with
!?^ti5;ular services, i.e., we wanted to present the impression of aflat name space for parameters. The structure that we have
defined combines both of our desires for parameter mangement:

o Parameters "owned" by only server and

o a flat name space for programs manipulating parameters.

T h e P a r a m e t e r M a n a g e m e n t S e r v i c e P a c r 9 7 6

Terminal Service Architecture March 5, 1982

Program

Service to manage
parameters
cont ro l l ing . . .

Logical Terminal
Services

Window Services

Canonical Terminal
Services

Terminal
Operator

Figure 3.1: Inside the Parameter Management Service

8.1.1 Lexemes for Parameter Management

[We anticipate a parameter set/read protocol which is completely
independent of the transfer of data lexemes. We would like tosee parameter names defined in common for all PDA services, not
just the Terminal Service, at least for common items.]
o <set {parameter-name} {parameter-value}>

Specifies a parameter name and a value for that parameter.
The format of the parameter value will vary depending on the
data type of the parameter name being specified.

The Parameter Management Service Page 77

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

o <read {parameter-name}>
Requests the value of the specified parameter. The format of
the parameter value will vary depending on the data type of
the parameter.

o <response {parameter-name} {parameter-value}>
The value of the parameter specified by a <read> lexeme.

8.1.2 Protocol for Parameter Management

[to be supplied]

8.1.3 Notes to the Implementor

[probably need examples of the three types of parameter
management interaction: from program, management component,
logical terminal component].

The Parameter Management Servi c e P a g e 7 3

Terminal Service Architecture March 5, 1982

9 The Terminal Service Overseer

[This section is very preliminary and will be filled in later.]

[Managing streams in the PDA environment is not well understood. Thusthis section will not discuss how services are achieved. We will talk
about tae types of services that must be provided in order to make
things work. We expect much of the requirements definition of these
services to come from two sources:
o The functional design of the logical terminal.

o The functional design of the Human Interface Services.]

The Terminal Service Overseer serves two distinct clients: other
components inside the Terminal Service and clients outside the Terminal
Service. Services provided to clients within the Terminal Service tend
to be interfaces to the environment outside the Terminal Service.
Services provided to clients outside the Terminal Service tend to
manipulate streams.

9. 1 Services

9.1.1 Ini t ial izat ion Services

There are two types of initialization service:

o Canonical Terminal Initialization and

o Logical Terminal (or Stream) Initialization

CT Initialzation deals with selecting the correct set of CT
Services (for example what kind of CT(s) to provide? Basic,
Graphics, or Forms CT), connecting a CT to the correct window
services, etc.
LT In i t i a l i za t ion a l low is Log ica l I /O to se lec t a log ica l
terminal service package, connecting a terminal user to an
appropriate human interface and job management service, resource
allocation for data bases, etc.

9.1.2 Security Service
Part of the reason for the Terminal Service Overseer is the need
for the Human Interface Service (and potentially other services)
to control the state of "other" logical terminals. To keep this
capability from being mis-used the Terminal Service will requiresome kind of validation before allowing the use of the more
potential ly destructive services.

Terminal Service Overseer Page 79

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

9.1.3 Stream Manipulation Services

There are probably two types of services related to stream
manipulat ion.
o Stream Status Services

o Stream Control Services
Stream Status Services would allow outside clients to request
information about streams, how many streams does a user have,
what are they connected to, how many I/O operations have been
performed, etc.
Stream Control Services would allow outside clients to modify the
state of streams that are (1) possibly not owned by the client
and (2) certainly not the normally referenced stream (in the case
of the Human Interface Service managing parameters, stream
control services would have to be invoked to change parameters in
"someone else's" or "some other" stream).

9.1.4 Attention Delivery Service

Allows the Terminal Service to deliver attentions (at least
QUIT$) to processes in the "outside" environment.

9.1.5 Process Status Service

Allows the Terminal Service to request information about the
outside environment. [For those people who are familiar with
DECsystem-10/20s we are talking about <control-T>.]

9.2 The Terminal Service Overseer

9.3 Notes on Implementation

o The germinal Service Overseer provide the Terminal Service with
environmental isolation. We can't say much about the needs of
the Terminal Service (we haven't done a functional design), we
can't say much about the needs of clients outside the Terminal
Service (we haven't designed a human interface) but th** Terminal
Server Overseer is where the two, possibly conflicting, spt of
needs meet.

Terminal Service Overseer Page 80

Terminal Service Architecture March 5, 1982

10 The Human Interface Service

[We have done no work in this area. We expect requirements for this
service to come from the group specifying user interfaces in a PDA
environment.]

Human Interface Service Page 31

Terminal Service Architecture March 5, 1982

11 Proposal for further application of the architecture

One of the unsatisfying things about this document is the lack of an
overall structure that shows how all types of terminals, forms, basic,
and graphics, are supported by the Terminal Service. This section
discusses the larger view of the Terminal Service.
In this section, we start with the assertion that the canonical
terminal level of the Terminal Service Architecture describes a model
of the appropriate type of terminal. The only canonical terminals w<-
will define are:

o The Forms Canonical Terminal,
[fields as primitive units]

o The Basic Canonical Terminal.
[described at length elsewhere
pr imi t ive uni ts]

o The Graphics Canonical Terminal,
[pixels as primitive units.]

in this document] [cel ls as

The Window Server understand
display; [whether there i
every possible CD structure
anyone's guess right now.]the size of the array of pri
canonical display uses to
Server takes lexemes for
canonical display and trun
window bounds. The lexemes
with the primitive unit o
server never sees forms can
graphics canonical termina
handling a graphics canoni
(primitive unit of the basic
handling a basic canonic
(primitive unit of the forms

s the str
s only
or a wind

the kin
mit ive u
manipulat
operat ion
cates or
received
f the c
on ica l t
1 . I n
cal term
canonica

al termi
canonica

ucture of each type of canonical
one window server that knows about
ow server per CD structure is a
d of primitive units it's made of,
nits, and the rules which the
e the primitive units. The Window
s describing operations on the

transforms them according to the
by the Window Server always deal
anonical display, e.g., the window
erminal lexemes intended
other words, the Window
inal doesn't know about
1 terminal), and the Window
nal doesn't know about
1 terminal).

for a
Server
c e l l s

Server
fi e l d s

Obviously a canonical terminal whose primitive units are pixels can beused to display the "larger" constructs which are cells (aggregates of
pixels) and fields (aggregates of cells). But the emulation of thes«*
lrftr Primitlve units is only possible if an architectural componentof the Terminal Service Architecture above the Window Server is willin*

toconvert cell or field lexemes into pixel lexemes. A more subtle
point, a canonical terminal whose primitive units are fields cannot
display anything "smaller" than fields; cells and pixels cannot existon a forms canonical terminal.

Lets look at a real example. Suppose the physical terminal is capable
ot supporting field operations in "forms" mode and cell operations in
character-at-a-time" mode (the OWL, PT45, and WREF" all provide both

capab i l i t i es .) Then the imp lementor o f the canon ica l te rmina l
drivers has a choice when providing forms support for these

Proposals for further applications Page 32

Terminal Service Architecture March 5, 1932

termina ls .

The implementor can choose to implement a Forms Canonical Terminal.
A forms CT takes advantage of the block and field capabilities of
the terminal and gains substantial performance improvements.
However, mapping canonical fields onto the fields understood by the

terminal may be difficult and a forms canonical terminal
provide basic canonical terminal-style access to the
terminal while the physical terminal is a forms canonical
e.g., no windows to the PDA command processor.

phys ica l
cannot
physical
te rm ina l ,
The implementor can choose to
putting the Forms canonical
fie ld-cel l convers ion layer
picture which follows). This
of field can be fairly easily
user has access to differen
forms) all at the same time.
user is that Forms Canonica
when the Basic Canonical Termi
or other dumb terminal. The t
flexibility by losing the abil
PT45, WREN, or whatever, wh
transmission t ime. Terminals
typical ly cost a l i t t le moruser looses a little money als

implement a Basic
te rm ina l f unc t i

(see the "Basic
approach gains fl
emulated with eel
t kinds of windo
An added attracti
1 Terminal functi
nal is supporting
erminal user pays
ity to use those
ich could save CP

like the OWL,
e than dumb termi
o.

Canonical Terminal,
ons in a separate

Canonical Terminal"
exib i l i ty ; any k ind
Is and the terminal
ws (scroll, page and
on for the terminal
onality is available

a FOX, DM10, ADM3A,
for th is k ind o f

features of the OWL,
U cylces and/or line

PT45, and WREN
nals so the terminal

[Existence of cheap terminal controllers or concentrators
provide the Terminal Service may change the cost picture.] t ha t

[We need to understand how swapping between Forms and Basic canonical
terminals works when the terminal (e.g. WREN) is being used first for
one, then for the other.]
The several pages show pictures of the Terminal Service Architecture
(without the Management Server and Human Interface Service) with the
our proposals (and alternates) for handling the three kinds of
canonical displays: Forms, Basic, and Graphics.

Proposals for further applications Page 33

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 8 2

To/from application
! !
!

+ + + +
! FORMS Log ica l | | FORMS Log ica l |
! Terminal Services | j Terminal Services |
+ + + +

i <-- field lexemes --> |
! !
v v

Field Window Services

i

i <-- field lexemes

FORMS Canonical
Terminal Services

■+
i
i
i
i

•+

C-5igure 11.1: Terminal Service Architecture with
Forms Canonical Terminal

Notes:

The Forms CT is block mode only. You send it blocks of field
lexemes and it will return the same. The "turn" concept is
probably built in.
The Forms CT deals only in "whole" fields, not "partial" ones. The
windows must contain entire fields, they can't be split. The
"logical display" seen from level 3 and up may be larger than the
window as long as this restriction is obeyed. (You would probably
have top and bottom windows rather than side by side ones.)

Auto tabbing, a relationship between fields, may need to involve
window services.

Scroll/page behavior is not supported on the Forms CT; there can
be.no Pa§e windows mixed in with the forms windows. (Of coursethis behavior may be emulated by an application package above the
logical terminal services which works l ike DPTX/TSF's "data
hand le r " .)

It's possible we nay want different definitions of the Forms ^T
e.g. for TP vs. DPTX, or for the Forms Logical Terminal Services!

P r o p o s a l s f o r f u r t h e r a p p l i c a t i o n s P a a e 34

Terminal Service Architecture March 5, 1982

To/from application

FORMS Logical
Terminal Services

<-- field lexemes

! fi e l d - c e l l
I converter
h

<-- cell lexemes

+ +
Basic Logical
Terminal Services
(GPITS)

<— cell lexemes -->

Cell Window Services

<-- cell lexeme,

I Basic Canonical
! Terminal Services

Figure 11.2; Terminal Service Architecture with
Basic Canonical Terminal

Notes:

The "field-cell" converter gets a character at a time in from the
Basic CT and performs all echo, edit, etc. behavior associated
with the Forms CT.

It's now possible to have field and cell windows mixed. It's also
possible to have an incomplete field in a window as long as it
contains complete cells! The field-cell converter wil l turn a
field display request into a string of cell display requests; the
Window Server will just truncate to the appropriate cell.

Proposals for further applications Page 85

Terminal Service Architecture March 5, 1982

FORMS Logical
Terminal Services

<— field
lexemes

fi e l d
conve

- c e l l
r t e r

To/from application

i p ixe l
! conve
+

- c e l l
r t e r

<-- cell
lexemes

Basic Logical
Terminal Services
(GPITS)

<-- cell lexemes -->

<— pixel
lexemes

p i x e l - c e l l
converter

! Graphics Logical !
! Teminal
H

Services

<— pixel ! lexemes —>

Pixel Window Services

<-- pixel lexemes

Graphics Canonical
Terminal Services

Figure 11.3: Terminal Service Architecture with~ g r a p h i c s C a n o n i c a l Te r m i n a l

Notes:

Don't know much about graphics primitives; we're relying on
analogy with forms/basic, which we do understand, to support thismodel of basic/graphics.

Proposals for further applications Page 35

-$ O X
i O W 0) H
1

03 ~
3

O c ~S cf 3* CD -s 03 X
i

X
i H
'

H
- o 0) c
f

H
- o 3 01 -o 0) OQ CD -

4

O

C
f

cf

cf
-

3

O
 C

D
H

 C
D

 C
D

cr
 o

3

-S
~S

1

CD
 c

f
<

 3
/-->

3
 3

H"
 C

D
CD

 H
-

H*
 H

-
"1

3

3

3
£

c

f
Cf

 Q
)

c
f

03
 0

3
=

 3
"

CD
 H

"
CD

H»
 H

"
0)

"J
 0

3
cf

cf

01
03

 0
3

3
"

03
03

CD
 C

D
CD

 0
3

0)
 H

1
H

1
"1

-J

3

01
03

<
 <

CX
 O

H-

H-
£

c

f
v

_
^

O

O
H

-3
*

o
•

CD
 C

D
3

 C
D

H
c

f
01

 0
1

C
l

T

-
sr

v.

01
 C

O
 0

3
X

i
£

-a
.

h

-
c

f
CD

 H
1

3
.

C

03
 0

3
H

-
O

Q
 O

l
CD

 0
1

H
"

"$

H
-

03
-

o

<
 c

r
-5

01
H-

H-

c
f

0)

3
O

H

"
0)

CD
 C

D
3

O
Q

 C
D

O
l

0)
-

j
~s

 ~
s

•

X
i

H
'

CD
0)

C

f
H

"
O

01
Xi

 C
D

03
OQ

H"
 3

*
 ~

i
rH

 O
H

*
H'

 0
1

3
 C

D
CD 03

OQ
01

Cf
 *

-*i
"*

jo
i

3-

O
O

0)
O

T
H

-

T
0)

•o
«-

3|
CD

03
3

3
*

c
f

H
«

s:
o

 c
r

cr
H-

 O
O

 C
D

CD
01

cf

C
f

3-

3*
n>

 O
3

CD
H-

 O
0)

C
f

0)
 ~

S
O

Q

3
a

CD
c

 <
CD

"S
T

 C
D

3
CD

 •
"•)

03

1
»-•

)
H

«
H1

 o
C

f

cf
o

3
H«

 "
1

H-
 C

D
-J

0)
1

3
O

"J

H
'T

D

01
3

01

o
01

H
-

v.

c
f

CX
3

"
0)

CD

O
Cf

O

iD
~$

H1
 ▶

"«>
 3* C

D
-J

CD
H

*
CD

 0
1

c
f-

a
!

01
 O

O
 C

D
<<:

0)
0)

03

X
T3

0Q
0)

3

3

H
«

CD
CD

O
 0

1
03

cr

3
3

c

f
3

0)

H
*

H
-

o
01

o

O
CX

H-
 0

)
03

 1

H
«

OQ C ~J CD CD 3 H
-

3 03 CO CD ~S < H
«

O CD > O 3
*

C
f

CD O c
f c CD H

«

+

+
r-j

 O
 I

CD
 "

I
I

~S
 0

3
 I

3
"O

 I
H

-

3"

I
3

H

03

O
M

03

CO
 O

 I
CD

 0
3

 I
"*

3

<

O
H

-

3
0

H

'
CD

 O
01

 0
3 H
^

I I +I

<
 +

I I

< <
+

/\ I I X
i

H
»

X CD CD X CD 3 CD 01 I I V

! cell-
! conve

! field
i conve

1
"J

Xi

1

>
|

-»

i

i
1

Cf
 H

«
 I

Cf
 O

 1
1

CD
 X

 |
/\

CD
 C

D
 1

1
T

 C
D

 I
"S

 H
"

1
H1

 I
M

1

+
+

O CD

<
 —

+

CD X CD 3 CD 01

+

+
1 1

1
r^

T
l

|

•
s;

CD
 O

 1
1

H

-
"S

 s
o

 I
1

3

3

S

i
I

c

x
H

-C
0

|

1

o
3

|

1

£

T
)

01
 c

-
 1

1

H
-

M

O

|
>

 1
 C

O
 C

D
1

<

>
 1

O
Q

|

1
 C

D
 H

1
CO

 H
-

|
1

 ~
S

 C
X

1

/\
CD

 O
 |

1

<
I

1

~S
 0

3
 |

1

H
-

1

1
<

M

|

1

O
H

-

|
1

 C
D

1

H
"-

*
O

|

1
 0

1
1

C

D

H
'

C
D

I

1
1

X

C

D
O

l

|
I

1

C
D

H

»
+

+

3

c

x
CD 01

+

+
■

■

l
•H

 C
d

 |
i

s

:
CD

 0
3

 |
1

 H
«

-s

01

|
1

3

3

H
-

|

1
 C

X
H

-

O

|
1

o

S
i

|

1

£

o
03

 t
—

 1
1

C

D
H»

O

|

>
 1

 C
O

 r
-»

>
1

O
Q

i

1
 C

D
 H

1
CO

 H
«

 |
I

-*

i

/\
CD

 O
 |

i

<

i
""*

 0
3

 |
1

H

-

|
<

H»

|

1

o

|
H

«

I
1

C

D

1
H1

 O
O

|

1

0
1

1

CD
 C

D
C

D

|
1

I

X

H
<

0
3

|

1

1
CD

 f
-1

+

+

3 CD 01
T

+

H

O

i
I

s

c

l
CD

 "
S

 |
1

H

«

|
~i

03

|

1

3

1
3

-O

1

i

a

i
H-

3*

I

i

o

-o

I
3

H

-

|
1

£

H

-

|
03

 C
i

|
1

x

1

M

01

|
>

 1
 C

O
 C

D
 |

>
 I

1
 I

D
 r

-«
 |

co
 r

-
i

1

"*

1
/\

CD
 O

 I
1

<

1

"S
 O

Q
 |

i

H
«

|

<

H
-

|

1

O

|
H

-

O

|
1

C

D

I
t-

'X
i

Q

03

|
1

0

1

I
CD

 H
-

CD
 H

1
 |

X

x
0

1

|
CD

 C
D

+

+
3

H

-
CD 01

r-
3

O ~i O 3 03 X
i

X
i r-» H
-

O 03 Cf H
- o 3

r-
3

CD "J 3 H
-

3 03 CO CD < H
-

O CD > -J O 3
"

H
*

C
f

CD O c
f C ~t CD

")
(J

O

H
H

|

0) O 3
"

<£
)

CO ro

T e r m i n a l S e r v i c e A r c h i t e c t u r e M a r c h 5 , 1 9 3 2

The work that remains to be done is:

o The Window Server needs to be fully understood for all types of
canonical terminal.

o The Forms and Graphics Canonical Terminal need to be defined. [We
are looking the the UK Forms Management Terminal Service project to
define the Forms CT. Perhaps the CAD/CAM or UNICORN projects
should define the Graphics CT?]

o The converters need to be constructed.

Once this work is done, the next step is to start building hardware
that directly supports arbitrary level 3 service packages, converters,
window management, and canonical terminals. [WREN 2, UNICORN or the
CAD/CAM workstation, BEAVER, HAWK/FALCON, EAGLE, etc. are all
candidates that might directly support some or all of the Terminal
Serv ice .]

P r o p o s a l s f o r f u r t h e r a p p l i c a t i o n s P a g e 38

Terminal Service Architecture

12 Glossary

[to be supplied]

March 5, 1982 1

1

1
i

1

1
1

1
1

1

Glossary Page 39

	Title Page
	Cover Page
	1
	Table of Contents
	2
	3
	4
	Preface
	5
	Terminal Services Overview
	6
	7
	Introduction to the Architecture
	8
	-- The Logical Terminal
	9
	10
	11
	12
	13
	14
	15
	16
	-- Human Interface Service
	17
	-- Terminal Service Overseer
	18
	19
	-- A short tour of the Terminal Service
	20
	21
	22
	23
	24
	Architectural Specification
	25
	Concepts
	26
	27
	28
	29
	30
	31
	The Canonical Terminal Server
	32
	-- Invoking the BCTS at level 1
	-- About scroll and page mode
	33
	34
	-- The Basic CT Services
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	-- BCTS Interfaces
	45
	46
	-- About the BCTS Server
	47
	48
	49
	50
	51
	52
	53
	54
	55
	The Window Service (Level 2)
	56
	57
	-- Services
	58
	59
	60
	-- Window Interfaces
	61
	-- Other work on Windows
	62
	The Logical Terminal Server (Level 3)
	63
	-- Invoking the right Level 3 service package
	-- The GPITS Services
	64
	65
	66
	67
	68
	69
	-- GPITS Interfaces
	-- About the GPITS server
	70
	71
	72
	73
	74
	75
	The Parameter Management Service
	76
	77
	78
	The Terminal Service Overseer
	79
	80
	The Human Interface Service
	81
	Proposal for further application of the architecture
	82
	83
	84
	85
	86
	87
	88
	Glossary
	89

